
AD-A263 269

Scientific and
Acesion For Engineering
NTIS CR>•'&I Studies
DTIC T/AL0

-U!-a- -r:o:- ----l

S...................... Compiled 1992
A.flubdfility Codes

A'• F vail ai,d I or

Dist Spucil.

Signal
q-lPIC Processing

Studies
Sj •pPR2 1199 3

-A .He Nuttall

PUBLISHED BY

NAVAL UNDERSEA WARFARE CENTER
DIVISION NEWPORT, NEWPORT, RHODE ISLAND

DETACHMENT NEW LONDON, 'vw LONDON, CONNECTICUT

• 93-083849~~ ~~~ x" I, Io it ý f • Il/li//ll•I!l'i/i



Foreword

This collection of technical reports addresses the following
topics: threshold setting and required signal-to-noise ratios for
combined normalization and or-ing; spectra and covariances for
nonlinear processing in class A noise; exact performance of
filtered and weighted energy detectors with mismatch; comparison
of kernels for the modified Wigner function; solution of
difference equation for waenumber response of plate; detection
performance of FSK in a partially-correlated fading medium.

Some of the material presented here is heavily based on the
author's earlier work, which can be found in the following
volumes in addition to the referenced technical reports:

*Performance of Detection and Communication Systems,
NUSC Scientific and Engineering Studies, 1974;

Spectral Estimation,
NUSC Scientific and Engineering Studies, 1977;

Coherence Estimation,
NUSC Scientific and Engineering Studies, 1979;

Receiver Performance Evaluation and Spectral Analysis,
NUSC Scientific and Engineering Studies, 1981;

Signal Processing Studies,
NUSC Scientific and Engineering Studies, 1983;

Signal Processing Studies,
NUSC Scientific and Engineering Studies, 1985;

Signal Processing Studies,
NUSC Scientific and Engineering Studies, 1986;

Signal Processing Studies,
NUSC Scientific and Engineering Studies, 1987;

Signal Processing Studies,
NUSC Scientific and Engineering Studies, 1989;

Signal Processing Studies,
NUSC Scientific and Engineering Studies, 1990.

Dr. William I. Roderick
Associate Technical Director
Research and Technology
NAVAL UNDERSEA WARFARE CENTER Compiled 1992

* Studies published prior to the 2 January 1992 reorganization

of the Naval Underwater System Center into the Naval Undersea
Warfare Center bear the NUSC imprint.

iii



TABLE OF CONTENTS

Foreword

TR 8865 Required Threshold Settings and Signal-to-Noise Ratios

for Combined Normalization and Or-ing, 10 April 1991

TR 8887 Spectra and Covariances for "Classical" Nonlinear

Signal Processing Problems Involving Class A Non-

Gaussian Noise, 21 May 1991

TR 8913 Exact Performance of Filtered and Weighted Energy

Detector with Mismatched Frequency and Time Locations

and Characteristics, 29 July 1991

TD 8921 Comparison of Two Kernels for the Modified Wigner

Distribution Function, 12 December 1991

TR 10015 Explicit Solution of Difference Equation for the

Wavenumber Response of Fluid-Loaded Stiffened Plate,

19 February 1992

TR 10041 Exact Detection Performance of Multiple-Pulse

Frequency-Shift Signals in a Partially-Correlated

Fading Medium with Generalized Noncentral Chi-Squared

Statistics, 23 April 1992

TR 10237 Statistics of a Whiteness Measure, 9 December 1992

Subject Matter Index

v



NUSC Technical Report 8865
10 April 1991

Required Threshold Settings and Signal-to-Noise
Ratios for Combined Normalization and Or-ing

Albert H. Nuttall

ABSTRACT

The system of interest here includes the combined nonlinear

transformations of normalization and or-ing in the data

processing chain. The required threshold settings for specified
false alarm probabilities are determined, as well as the required

input signal-to-noise ratios for specified detection

probabilities. Specializations to normalization or or-ing alone

are available by particular choices of parameter values built

into the models.

When the sizes of the transformations are changed, that is,

the amount of normalization and/or or-ing, the thresholds will

also have to be changed if the earlier probabilities are to be
maintained; these options are included in the first program

listed. In addition, the possibility of changing the number of

thresholds, at the same time that the sizes of the nonlinear

transformations are changed, is included in the second program

listed. Furthermore, four alternatives are allowed for selecting

the spacing of the thresholds, namely, equispaced in power,

equispaced in decibels, preset normalized thresholds, or preset

probabilities.

Approved for public release; distribution is unlimited.
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LIST OF SYMBOLS

RV random variable

IID independent identically distributed

PDF probability density function

CDF cumulative distribution function

CF characteristic function

Prob probability

xm m-th noise-only random variable, (1)

M M+1 is the number of random variables Ixm)

px(u) probability density function of Xm, (1)

C x(X) cumulative distribution function of xm, (1)

f (&) characteristic function of xm, (2)

Px(j) j-th moment of xm

x1 (J) j-th cumulant of xm

Cx(P) inverse cumulative distribution function for x, (3)

f nonlinear transformation, (5)

y output of nonlinear transformation, (5)

W km inputs to normalizer and or-ing device, (8)

xk output from or-ing device, (8)

K size of or-ing operation, (8)

C y(Y) cumulative distribution function of y, (9)

Y1 first threshold for application to y, (9)

P1  specified cumulative probability at Y1, (9)

Cy (P) inverse cumulative distribution function for y, (9)

Y T last threshold for application to y, (10)

T total number of thresholds, (10)
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Ay scale factor, (10)

dBy decibel ratio between YT and Y1, (10)

Y t t-th threshold for application to y, (11)

It t-th normalized threshold for y, (12)

P y mean of random variable y, (12)

Oy standard deviation of random variable y, (12)

Pt cumulative probability value at threshold Yt, (13)

i-Pt false alarm probability, (13)

Dt t-th threshold in decibels, (14), (16)

N new size of nonlinear transformation, (20)

z output of new nonlinear transformation, (20)

Cz(Z) cumulative distribution function of z, (21)

Z t t-th threshold for application to z, (21)

Cz(P) inverse cumulative distribution function for z, (21)

it t-th normalized threshold for z, (22)

Pz mean of random variable z, (22)

a z standard deviation of random variable z, (22)

dBz decibel ratio between ZT and Zl, (23)

U new number of thresholds, (24)

Zu' u-th new threshold, (24)

P41 cumulative probability at ZI, (25)

Z.0 u-th normalized threshold for z, (26)

Cy(Y;R) cumulative distribution of y with signal present, (27)

R input power signal-to-noise ratio, (27)

S1  specified probability, (27)

Rt required signal-to-noise ratio at threshold Yt' (27)
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PdJ j-th detection probability, (30)

a average of M random variables, (31)

fa(&) characteristic function of a, (32), (36)

Pa(U) probability density function of a, (32), (37)

py(u) probability density function of y, (34), (39)

y3 j-th moment of random variable y, (41)

(b)j b(b+l)...(b+j-1), (41)

Xy(J) j-th cumulant of y, (55)

a k k-th denominator average, (62)

F1,F 2 auxiliary constants, (79)

bk k-th denominator average, (81)

L new size of or-ing device, (82)

GIG2 auxiliary constants, (86)

Qt auxiliary function, (95), (100)
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REQUIRED THRESHOLD SETTINGS AND SIGNAL-TO-NOISE

RATIOS FOR COMBINED NORMALIZATION AND OR-ING

INTRODUCTION

When weak signals of unknown strength and location have to be

detected in the presence of noise of unknown and varying level,

it is necessary to make estimates of the intensity of the

interfering background. These estimated (noise) levels are then

compared with that for a candidate signal level and location for

purposes of making statements about the likelihood of signal

presence or absence in that particular data segment under

investigation. Here, we will investigate the performance

capability of such a normalizer, in terms of the false alarm and

detection probabilities, and determine the thresholds and input

signal-to-noise ratios required to attain these probabilities.

Furthermore, when large amounts of multichannel data have to

be processed with limited computational facilities in reasonable

or short intervals of time, it is necessary to resort to

shortcuts or data reduction in order to avoid overload. One

possible approach is to employ or-ing, in which only the largest

of a set of quantities -s retained for further data processing

and decision maring.

Finally, in practice, it is often necessary to utilize both

normalization and or-ing together. This combination of nonlinear

processors requires a resetting of the thresholds that would have

been appropriate for use of the normalizer alone. Here, we shall

I
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investigate all three situations, namely normalization, or-ing,

and a combination of normalization and or-ing, in terms of the

probabilities and thresholds stated above.

When the size of the nonlinear transformation, whether it be

normalization, or-ing, or both, is changed, the required

thresholds will have to be changed if the previously realized

(false alarm) probabilities are to be maintained. For example,

suppose we had been or-ing 8 random variables and decided to

change the or-ing size to accept 16 random variables instead, for

purposes of further data reduction. Then, the required threshold

settings would have to be modified to maintain specified false

alarm probabilities, as would the required input signal-to-noise

ratios for specified detection probabilities. This maintenance

of probabilities under a change of size of transformation will be

investigated here.

At the same time that the size of a nonlinear transformation

is changed, it may be desired to subject its output to a

different number of thresholds than were utilized previously.

This possibility is allowed and analyzed in addition.

The particular physical situation considered here is that of

multiple simultaneous beamformer outputs, each with large banks

of narrowband filters subject to envelope-squared detection. For

Gaussian noise inputs, the probability density function of each

of these device outputs is exponential. Furthermore, when a

Gaussian signal is also present at the input of one of these

narrowband filters, the corresponding probability density

2
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function of the detected output is still exponential, but with a

level governed by the signal-to-noise ratio at that particular

filter output. This scenario will be the mainstay of the

analysis here.

The physical motivation for this study is to be able to set

requantization levels on a display, in order to achieve constant

marking density independent of the signal processing parameters

such as the amount of or-ing and normalizer size. Such displays

occur in active as well as passive sonar systems.

3/4
Reverse Blank
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DEFINITIONS OF FUNCTIONS

The random variables (RV) for noise-only, Ix m for 0 S m S M,

are independent and identically distributed (IID) with common

probability density function (PDF) px(u) and cumulative

distribution function (CDF) C x (X), where

X

Cx (X) - Prob(xm < X) = du p(U) (I)

The corresponding characteristic function (CF) of RV xm is

fx(&) = f du exp(i~u) p x(u) , (2)

where integrals without limits are over -- ,+-. The moments and

cumulants of order j of RV x are denoted by px(j) and Xx (j),

respectively. The inverse function to CDF C x (X) in (1) is

denoted as Ex(P); that is,

if P - C x (X), then X - C x (P) for 0 < P < 1 . (3)

As an example, consider narrowband filter outputs for which

Px (u) - exp(-u) for u > 0 ,

C x (X) - 1 - exp(-X) for X > 0

f (&) = (1 - i&)-I for all &

Cx (P) - - 1n(1 - P) for 0 < P < 1

px (i) - j!, Xx (j) - (j-l)! for j Z 1 (4)

5
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The scaling of RV xm in (4) has been taken such that its mean

is 1. This is done solely for notational convenience; it will

not affect the probabilities realized herein nor the required

signal-to-noise ratios. However, it does influence the threshold

settings calculated, which would have to be scaled for a

different input noise level.

6



TR 8865

THRESHOLD RESETTING

A collection of IID RVs, x mI for 0 1 m S M, is subject to a

nonlinear transformation f, yielding output

y = f(xo,xl,...,xM) . (5)

For example, a normalizer is characterized by

y=1x0 ' Z 1 ,(6)R(fitI x 1 + x 2 + 0e. + -XM} 6

while an or-ing device yields

y - max(xl,x 2 ,...,xM) , M Ž I . (7)

A combination of a normalizer and or-ing device will require a

more general formulation; then we would use

X w ko for 11k IK,k 1MXk L =1• Wkmfo k K,

Mm=

y f max(xlVx 2 ,...,XK) , (8)

where we need two parameters, M and K, and fwkm) are K(M+1) IID

RVs. Of course, then the K RVs IxkI are also IID.

Let C y(Y) be the CDF of RV y at the output of general

nonlinearity f in (5). Choose threshold YI such that specified

cumulative probability P1 is realized there; that is,

7
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P1 = C (YI) ' or Y1 = Cy(Pl) , (9)

where Cy is the inverse function to C y. 1-P 1 is the false alarm

probability at threshold Y1 " Also, choose additional thresholds

{Yt} such that Y1 < Y2 < ... < YT' for a total of T thresholds,

with the largest one being

YT = Y A , where dBy W 10 logj0(Ay (10)

is a specified decibel value. Then take the remaining thresholds

according to equal spacing rule

Yt W Y1 + T 1 (t - 1) for 1 1 t I T . (11)

The normalized thresholds for RV y are defined as

=t -tY for 1 4 t I T (12)
y

where p y and a y are the mean and standard deviation of RV y.

Then compute the cumulative probabilities realized at these

thresholds [YtI, namely

Pt C Cy(Yt) for 1 1 t S T ,(13)

and print out M, dBy, Py, ay, T, (Yt|, fYtI, 'Pt'. The false

alarm probabilities are 11-Pti.

8
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An alternative choice is to space the thresholds {Yt} equally

in decibels. That is, defining

Dt = 10 logl 0 (Yt) for 1 1 t • T (14)

as the threshold in decibels, we take Di as given in terms of YI

and we take

DT = D1 + dB. (15)

The intermediate decibel thresholds are then selected according

to the equal spacing rule

Dt Di + • (tT1) for 1 • t T. (16)

The power thresholds can then be evaluated as

Yt = 1 0 Dt/1 for 1 t I T . (17)

The cumulative probabilities at these latter power thresholds

follow from (13) as before.

Another possibility is to simply set the thresholds according

to

Yt y + Uy ]t for 1 1 t T, (18)

where normalized thresholds [Ytj are preset constants determined

by the user. In this latter case, probability PI in (9) would

not be realized at initial threshold Y1 = Py + a y x1 " In any

event, the desired printouts are the quantities listed under

(13).

9
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Finally, we could set the thresholds such that preset values

of probabilities IPtI are realized for all 1 4 t e T. That is,

solve (13) for the thresholds according to

S= Cy(Pt) for 1 1 t I T . (19)

This amounts to setting T different false alarm probabilities

Il-Pt}.

10
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ALTERNATIVE SIZE TRANSFORMATION

Now consider the new RV z obtained by changing the parameter

value from M to N in the given nonlinear transformation in (5):

z - f(x0,xl,...,xN) . (20)

N can be larger or smaller than M. Let the CDF of RV z be C z(Z).

We now choose new thresholds, fZt} for 1 1 t I T, such that the

probabilities (Ptj in (13) are maintained for RV z; that is, we

choose thresholds jZtI for RV z in (20) such that

Cz(Zt) = Pt , or Zt = Cz(Pt) for 1 5 t S T . (21)

These thresholds (Zt}, to be employed for RV z, will not

necessarily have equal spacing, as did the thresholds IYt) in

(11), for example, for RV y. The normalized thresholds for RV z

are

tt - tz for S t S T, (22)

where pz and az are the mean and standard deviation of RV z.

Then print out N, dBz, z'z' z' T, jZt1, Zti, {(Pt), where

dBz a 10 1og10 (ZT/Zl) . (23)

zi
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DIFFERENT NUMBER OF THRESHOLDS

If RV z is to be subject to a different number, U, of

thresholds than RV y was, it is not always reasonable to try to

maintain the set of T probabilities JPt| realized in (13). (U

can be larger or smaller than T.) One alternative is to maintain

the edge probabilities P1 and PT according to (21), thereby de-

termining values for Z and ZT. Then choose a different complete

set of thresholds [Z1| for RV z according to equal spacing rule

zT - Z
Z6 1 U - 1 (u 1) for I I u I U (24)

We can then evaluate the cumulative probabilities at these

latter threshold values as

P, - C (ZV) for 1 1 u I U • (25)
u z u

Of course, PI - P1 and P' - PT' since Z' - Z1 and Z= ZT. This

also means that dBz is still given by (23).

It must be noted that this change in philosophy, namely to

maintain only edge probabilities P1 and PT' will not reduce to

the earlier results when we set U - T here. The new thresholds

in z, given by (24), are equally spaced even if U T, whereas

the former thresholds given by (21) are not.

Print out N, dB, IPz z' U U, (Z11, (I), {Pt), where |Z(| are

the normalized thresholds

Z0 W-u for 1 S u I U • (26)

12
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SIGNAL-TO-NOISE RATIO REQUIREMENTS

Let us return to the original nonlinear transformation (5)

characterized by parameter M. The CDF of RV y, with signal

present in just one of the input RVs Ixm ), is denoted by Cy(Y;R),

where R is the input signal-to-noise ratio (SNR) in that

particular xm RV containing a signal. If we want this new CDF to

realize a specified probability value S1 at all the thresholds

|Yt| in (11), the required SNRs JRt| must satisfy

S1 = Cy(Yt;Rt) for 1 S t S T . (27)

From (13) and (27), we know that

Pt W Cy(Yt) W Cy(Yt;0) for 1 S t S T . (28)

Therefore, specified probability S1 in (27) must satisfy

S1 1 Pt for 1 4 t S T , (29)

in order that nonnegative SNRs JRtI can result as solutions to

(27). That is, each cumulative distribution value must be

decreased from Pt to S1 , meaning that each exceedance probability

has been increased from false alarm probability value i-Pt to

detection probability value PdI - 1-S1. The actual determination

of CDF C y(Y;R) will have to wait until after we have specified

and analyzed the nonlinear transformations (5) of interest, for

the case of noise-only present.

13
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If several detection probabilities, like PdI = .5, Pd 2 = .9,

Pd 3 - .99, are specified, there will be a set of equations like

(27) for each case, namely

1 Pd S. - C(Yt;Rt for 1 1 t I T ; j = 1,2,3 . (30)

14
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STATISTICS OF NORMALIZER

Let RV y be obtained by means of a normalization procedure

from IID RVs {Xm1, 0 1 m • M, according to transformation

Y x 0 X] - 0 (31)

(x+ • + . + xM

where we assume that xm 1 0 for all m. The average RV, a, in the

denominator of (31) has, respectively, CF and PDF

f a(&) = [fx(&/S)] M I

Pa(U) = •-J d& exp(-iu&) (f (E/M)]M - (32)

The CDF of RV y in (31) is, using the statistical

independence of x0 and a,

C y(Y) = Prob(y < Y) = Prob(x 0 < Ya)

CD Yt

"f dt Pa(t) f du px(u) f dt Pa(t) C( Yt) (33)

0 0 0

The corresponding PDF of RV y is, upon differentiation,

p y(u)= J dt t Pa(t) Px(ut) (34)

0

The moments of RV y can be found from a couple of forms:

15
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P y,(j) = y~ f du u~ p (u)=
0

x] a- ( 8(i)=) du uj P (u) X f dt t-i Pa(t) .(35)

Convergence of the last integral in (35) may not occur for larger

values of j; that is, due to the division in (31), RV y may not

have finite higher-order moments.

EXAMPLE

The example presented in (4) is utilized here. From (4)

and (32), the CF and PDF of average RV a in (31) are

fa(E) = 1 R(6f )=(36)
(1 - i&/M)M

and

Pa(U) MM uM-I exp(-Mu) for u > 0 (37)

respectively. The CDF of RV y then follows from (33) and (4) as

Cy(Y) W dtMM t(M-1)!exp-Mt) I - exp(-Yt)] =

0

M)U ) frY>0.(38)

The PDF of RV y is therefore

16
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-M- 1
p(u) I + ) for u > 0 . (39)

The inverse function to CDF C y(Y) in (38) is

C y(P) = M[(i - P)-1/M - i] for 0 < P < 1 . (40)

The j-th moment of RV y is given by

P(j) = = du uj p, (u) ) du u (I + -M-1

0

Mj+l B(j+1,M1-j) = II'r~l M = MJ for j < M , (41)F(M+I) (M-j)j

where we used (39) and (1; 3.194 3 and 8.384 1]. In particular,

MMI 2 - 2M 2 for 14 > 2 . (42)M1(M-2)(M-1) ' y =. )(M-2)(M-I)2frM>2 4

The condition M > 2 is necessary for RV y to possess a finite

variance. we now have all the quantities required for

application in the previous section on threshold resetting.

For M - w, f a() in (36) equals exp(i&); that is, RV a in

(31) is equal to the constant 1. This corresponds to no

normalization and, in fact, (31) reduces to y = xO. Also,

(38) - (41) reduces to (4), as expected.

17
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CHANGE IN SIZE OF NORMALIZER

If we now change from size M to N in normalizer (31), we

obtain RV z as considered in (20) and sequel. Its CDF follows,

by similarity of form to (38), as

-N
Cz (Z) - 1 - (I +) for Z > 0 (43)

Its inverse function is

Cz(P) = NI[(I - P)-1/N 1 i] for 0 < P < 1 . (44)

Reference to (42) also reveals that the mean and standard

deviation of RV z are

N-i ' z N N ) for N > 2 (45)

The new thresholds are given by (21) and (22).

18
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STATISTICS OF OR-ING DEVICE

Let Ixm I 1 4 m 4 M, be IID RVs with common PDF p x (u) and CDF

Cx(X). The CDF and PDF of the maximum RV

y - maxlx ,x 2 ,...,xM1 1 (46)

yielded by an or-ing device, are then

Cy(Y) - [Cx(Y)]H , (47)

p y(U) - M (C x(U)] P x(U) , (48)

respectively. The inverse function to CDF Cy in (47) is

C y (P) = PM for 0 < P < 1 . (49)

Here, again, Cx is the inverse function to CDF Cx of RV xm.

The CF of RV y follows from (48) as

fy(M - f du exp(i~u) M CCx (U)]M-1 Px(U) • (50)

The moments of RV y may be obtained from (48) in the form

Py(j) = f du uH M [Cx(U)]M-1Px(u) . (51)

Alternatively, the cumulants can be obtained by a power series

expansion of the natural logarithm of CF fy () in (50).

19
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EXAMPLE

We again use the results given in (4). Substitution into

(50) yields

f () f du exp(i~u - u) M [1 - exp(-u)]M-l

0

M H 1 dt t- i (lt)M-Hi r(i-iý) r(M+l)

0

1 (52)

where we let t - exp(-u) and used [1; 8.380 1 and 8.384 1]. This

is a very compact form and is easily computed numerically, if

necessary. This result illustrates that RV y has the same

statistics as RV w defined by

"w r. = -"'i x1 + x2 + + xM (53)m=0

In order to determine the cumulants of RV y, we consider

M M N k
In f(• fi- in~l - E) - T i m (i4)

kt m!"m4

m-1 m=l k-il

20
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The cumulants follow immediately as

M

x (J) = (j-1)! for j Ž 1 (55)
=1 ml

In particular, the mean and variance of RV y are

X(l) = X(2) = 1 (56)

m=l m=1

respectively. It is seen that the mean of RV y increases without

limit, in fact, logarithmic with M. On the other hand, the

variance saturates at n2/6, meaning that the standard deviation

ay of RV y cannot exceed n/6½ = 1.283.

The CDF of y follows from (47) and (4) as

C y(Y) = [1 - exp(-Y)] for Y > 0 , (57)

with corresponding inverse function

Cy(P) = n1 - Pl/M) for 0 < P < 1 (58)

For M 1 1, there is no or-ing, and (46) reduces to y = x .

Also, (52), (55), (57), and (58) reduce to (4), as expected.

21
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CHANGE IN SIZE OF OR-ING DEVICE

If we change from size M to N in or-ing device (46), we

obtain RV z considered in (20) and sequel. Its CDF is, by

similarity in form to (57),

Cz(Z) - [1 - exp(-Z)]N for Z > 0 . (59)

The corresponding inverse function is

Cz(P) = ln( i1 - pl/N) for 0 < P < 1 . (60)

Reference to (56) reveals that the mean and variance of

RV z are given by

P C'z (61)
n-i n-i n

The new thresholds for RV z are given by (21) and (22).

22
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STATISTICS OF NORMALIZER AND OR-ING DEVICE

Here, we consider a set of K(M+1) IID RVs fwkm) subject to

both normalization and or-ing, according to

a I W xk W for 1 1 k I K (62)=1 a

y - max(xl,x 2 ,...,xK) . (63)

The statistics of the normalization portion, namely JXkI for

1 1 k I K, were previously considered in (31) - (35) for the

general case, and then specialized to an example in (36) - (42).

Also, the analysis of the or-ing portion was conducted in

(46) - (51) and then specialized to an example in (52) - (58).

We will rely heavily on those results in order to minimize the

presentation in this section.

EXAMPLE

We presume that all the input RVs fwkm) in (62) have the

common exponential PDF used in example (4) for all the earlier

results here. Then, by reference to (31) and (39), we can state

that the common PDF of RVs Ixk) defined in (62) is

~-1-1

px(u) = [1 + R for u > 0 . (64)

Similarly, the CDF of RVs |xk} follows, by reference to (38), as
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-M
Cx(X) - 1 - (i + for X > 0 . (65)

The CDF of RV y defined in (63) is then

K

Cy(Y) - [C (Y)] - - + for Y > . (66)

Its inverse function follows readily as

1K- 1/M
Cy(P) =M11l - P"' - 1 for0 < P < 1 .(67)

The PDF of RV y can be obtained by differentiation of (66):

py (u) - K [C x(U)K-1 Px(u)

1 ( +R)MK-1I' ulM
- K I - (+ i + -- for u > 0 . (68)

The j-th moment of RV y can be found from the integral

y = j du uj py(u) for j < M • (69)

0

where we have taken advantage of the fact that RV y can never be

negative. However, a useful alternative in some cases is

afforded by employing integration by parts on (69), with the

result, for j 1 1, that
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Py(j) i j f du uj-I [1 - Cy(U)] , (70)

0

where we assume that

lim uJ[1 - C (u)] 0 (71)

This requirement is tantamount to presuming that the j-th moment

Py(j) exists, that is, j < M.

When we use CDF (66) for RV y, then j-th moment (70) becomes

"W_ I M1 K
lj)= -j du uj- 1 - 1 - (1 + a 1. (72)

In order to evaluate this integral, let, for the moment,

-M
+ RM) -(73)

Then, the bracketed term in (72) can be expanded according to

C= _ ] (K) Ic ukJ M
(1 - Q]K kI (_Q)k 1 + _()k K)(11 + - (74)

k=0 k-i

Employment of this result in (72) yields
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K U)Mk

PJ () - f du uj-I 1-1k- K) (I + =

0 k=1

K kI KCO j1 +R-Mk
= ~(- 1 )k k~ f du u' (+)

k-l 0

Kk-i

j! MJ Z (K) (-1-l)TT for 1 4 j M M , (75)

k-i M-~

where we employed [1; 3.194 3 and 8.384 1] and simplified the end

result. For K = 1, (75) reduces to (41), as it must.

The first two moments for RV y follow readily from (75) as

p (1) = M K) (-I)76Mk-1 (76)

k-i

and

K (_()k-1
py( 2 ) - 2M 2 (MK-2Mk-I) for M > 2 (77)

k=l

Both of these results are easily computed by means of

recurrences; however, a bad feature of these two sums is that

they are alternating series and lose significance for large K due

to the binomial coefficient which gets very large. A backup

procedure is to revert to numerical integration of (68) - (69) or

(70) - (72), both of which integrands can never go negative and

which decay as uj-M for large u.
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However, better alternatives to the first and second moments

have been found, that are not subject to cancellation and loss of

significance. Namely, it is shown in appendix A that

1y(1) - MF- 1] , y= M(F 2 - F2) , (78)

where

F 1 , F2 {k2 for M > 2 . (79)
k= k Mk=1 k - R

These finite products are very useful and retain significance

even for large K, where (76) and (77) are useless. The very

compact BASIC program listed below computes both quantities in

(78). The program has been written so as to avoid overflow,

even when K is large.

K=
M= M > 2
A=1/M
B=2/M
Fl1F2=1
FOR Ks-l TO K
F1=F1*Ks/(Ks-A)
F2=F2*Ks/(Ks-B)
NEXT Ks
Muy=M*(Fl-1)
Sigy=M*SQR(F2-Fl*FI) (80)

By using the techniques in appendix A and laboriously

expanding out (75) for j - 3, it has been found that

y(3) - M3(F 3 - 3F 2 + 3F 1 - 1)

where we define products
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Fm =j{k k } f or0:Sm <M.

Notice that Fo = 1. Based on this result and (78), we

conjectured that the j-th moment is generally given by

P y(j) - Mj •(_l)n (i) Fjqj for j < M
n=0

In fact, this has been confirmed numerically for several values

of M, K, and j. For large j, the alternating character of this

series would also suffer from loss of significance; however, for

the low order moments of general interest, this is not a problem.

The third and fourth cumulants of RV y were also computed in

terms of sequence IFn1; they turned out to be, for M > 4,

Xy( 3 ) = M3 [F3 - 3F 2 F1 + 2FJ ,

Xy( 4 ) - M4 [F4 - 4F 3 F1 - 3F 2+ 12F 2 F• - 6FI41

But these rules for obtaining cumulants IX yx(J)} from products

IFn I are identical to the general rules for obtaining cumulants

from moments, within the factor M3; see, for example,

[4; page 70, (3.41)]. Thus, we have a very efficient and

accurate method for obtaining the low-order cumulants directly

from the finite products IFn ). The case for Xy(1) in (78)

differs slightly from the usual rule, in the need to subtract 1.

(See appendix C for analytic corroboration of these conjectures.)
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ANALYTICAL CHECKS

Numerous checks on the results above are possible. When

M - (no normalization), the CDF of y in (66) reduces to (57),

where it must be remembered that K in this section on combined

normalization and or-ing corresponds to M in the section on

or-ing alone. On the other hand, if K - 1 (no or-ing) in (66),

the result in (38) correctly emerges.

With regard to the inverse CDF in (67), it reduces to (58)

for M - w, whereas it reduces to (40) for K = 1. The PDF of RV

y, given in (68), reduces to the derivative of (57) for M = -,

whereas it reduces to (39) for K - 1. Finally, the first two

moments in (78) - (79) reduce, after some manipulations, to (56)

for M - -; on the other hand, the j-th moment for K = 1 is best

handled from form (75) which correctly reduces to (41).

EXTENSIONS

The case where the normalizer and or-ing device are followed

by an averager is discussed in the summary below, and the method

of determining the performance of that system is outlined.

Another alternative with practical merit is that of normalization

followed by averaging and or-ing. Since the CF of the normalizer

output is available by a Fourier transform of (39), it can be

raised to a power to find the CF at the averager output. Then

another Fourier transform can yield the CDF. At this point, we

could utilize (47) to find the CDF of the system output.
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CHANGES IN SIZES OF NORMALIZER AND OR-ING DEVICE

We now address the change in size of the normalizer in (62)

from size M to N and the change in size of the or-ing device in

(63) from K to L. There are no restrictions on the relative

sizes of the parameters. The new equations are

1 N Wko

bk N'I = wkn' Yk -E--for1 k•L, (81)

z = max(yl,y 2 ,...,yL) . (82)

The CDP of RV z follows, by similarity of form to (66), as

Cz(Z) 1 1 - (I + w for Z > 0 . (83)

The inverse function is easily shown to be

-1/) /N
C z(P) = I[(l -P1 ) - 1J forD0 < P < 1 .(84)

The first two moments of RV z in (82) are given, by

comparison with (78) and (79), as

½

Z (1) N[G 1 - 1] , = N[G2 - G•) , (85)

where

"G 1 , G2 = - (86)
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INPUT SIGNAL-TO-NOISE RATIO REQUIREMENTS

In this section, we will determine the CDFs of the outputs of

the three nonlinear systems considered above, namely (31), (46),

and (62) - (63), for the case where a signal is present in one of

the input RVs. This will enable us to use the results given in

(27) - (29) for determination of required input SNRs fox a

specified system detection probability Pd1 = 1-S1.

NORMALIZER

The nonlinear transformation of immediate interest is the

normalizer given by (31). The PDF of denominator average RV a is

given by (37), while the PDF of numerator RV x0 with signal

present will be modified from (4) to the form

1 (u
P (u;R) (-u for u > 0 , (87)Px(U ' !+ =x +R

where R is the input power SNR. The corresponding CDF is

Cx(X;R) - 1 - expfA ) for X > 0. (88)

By reference to (33), (38), and (88), we find the CDF of RV y

in (31) for signal present to be

Cy(Y;R) = dtMM- ) I - exp( j-)J

0

([+Xi±! -M
= - 1++R) for Y > 0 . (89)
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We now employ this result in (27) to obtain

S =1 - i+ l+ for 1 1 t I T . (90)

The solution for the required input SNR Rt is then given by

RtY-/M -1 for 1 S t & T. (91)(1 - SI1)-/ - 1

We must repeat here the caution mentioned ir (29), namely

that specified probability S1 at threshold Yt must be less than

or equal to probabilities {Pt} in order that nonnegative SNRs

IRtl result in (91). This is reasonable since it corresponds

physically to demanding a larger detection probability when

signal is present than when absent.
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OR-ING DEVICE

Here, we are interested in the or-ing device characterized by

(46) when signal is present in one of the RVs IXm}. The CDF of

RV y is then given by

C y(Y;R) - C x(Y;R) [C (Y)]MI

- exp[-.j)] [1 - exp(-Y)]M-J for Y > 0 (92)

where we used (88) and (4).

If we now employ (92) in (27), we have to satisfy

- exp _'1:11 1 - exp(YtjI 1for 1 • t • T (93)

The solution for the required input SNR is given by

Rt = - lnl - S/Qt) 1 for I S t S T , (94)

where
24-1

Qt= 1 - exp(-Yt)] for 1 5 t S T (95)

Again, (29) must be satisfied.
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NORMALIZER AND OR-ING DEVICE

The nonlinear transformation to be investigated here is the

combination of normalization and or-ing, as characterized by (62)

and (63), when signal is present only in RV w1 0 . Therefore, only

RV x in (63) contains signal.

The CDFs of RVs [XkI, for 2 S k S K, are given by (65). On

the other hand, the CDF for x, is available by reference to (89),

in the form

Cx (X;R) =1 + X) for X > 0 . (96)

Therefore, the CDF for RV y in (63) is given by

C y(Y;R) = C x(Y;R) [Cx(Y)JK-1 _

-+ +) I - I + X K-i for Y > 0 , (97)

where we used (96) and (65).

When we equate this result to the specified probability S1

according to (27), we obtain

IK-1

1= 1 - 1+ 1--"t 1 [ ( + for 1 S t S T . (98)

The solution for the required input SNRs (Rt] is given by
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Rt - t/M -1 for 1 4 t S T (99)(1- Sl/Qt)-/M - 1

where

Qt I I - 1 for 1 1 t I T (100)

Restriction (29) must be satisfied here also.

Finally, if several detection probabilities Pd1 , Pd 2 , Pd 3 ,

are of interest, we must satisfy (30), where

maxil-Pt) S minfPd J . (101)

As checks on the results in this subsection on combined

normalization and or-ing, we observe for M - - (that is, no

normalization), (100) reduces to (95), where K here corresponds

to M there for or-ing alone. Also, (99) reduces to (94). On the

other hand, for finite M, but with K - 1 (that is, no or-ing),

then (100) reduces to Qt - 1, in which case (99) reduces to (91).
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SUMMARY

We have determined the false alarm and detection

probabilities for three different nonlinear transformations,

namely a normalizer, an or-ing device, and a normalizer followed

by or-ing. In particular, results are given for the following

statistics of the outputs of each device: the PDF, the CDF, the

inverse CDF, and either the moments or the cumulants (depending

on their relative tractability). These results are sufficient to

compute the receiver operating characteristics (ROCs) of the

processors, if desired. However, we have also been able to solve

explicitly for the input SNR required to realize specified false

alarm and detection probabilities; this largely circumvents the

need to compute ROCs.

Two programs, with numerical examples of their execution, are

listed in appendix B. The first corresponds to the case where

the number T of thresholds is kept fixed as the size of the

nonlinear transformation is changed from M to N; see (20) - (23).

On the other hand, the second program allows the number of

thresholds to change from T to U as the size of the nonlinear

transformation is changed from M to N; see (24) - (26).

Both programs are written for the general case where there is

both normalization (of size M) and or-ing (of size K) included in

the data processing; see (62) - (63). By making M infinite, the

program will handle the case of or-ing alone; on the other hand,

by setting K = 1, the program addresses the case of normalization

alone. Thus, these two programs cover all the cases addressed in
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this investigation. (Since it is not possible to actually set

M infinite in a program, this situation is handled by setting M

to any value less than or equal to 2, in order to flag this case

in the program, and then branching appropriately at various

points in the program. The substitute equations for this case of

infinite M come, of course, from the earlier analysis for or-ing

alone. For finite variance, normalization requires M > 2; see,

for example, (77) or (79).)

We have not included the effects of averaging after the

normalization and/or or-ing in this study. Hence, the required

input SNRs calculated here sometimes turn out to be rather large.

The exact analysis including averaging would be rather involved,

since the new decision variable would have a characteristic

function given by a power of the characteristic function fy (t) of

current output variable y; that is, from (68),

O -Hi K-i1H-
fy(•) = K J du exp(itu) i - (1 + (i + • (102)

0

This is probably best handled through the use of fast Fourier

transforms. The integrand decays as u-M-1 for large u, which is

attractive since M, the normalization size, is generally fairly

large in order to guarantee decent performance.

In the meantime, in order to get a rather rough idea of the

improvement attainable by employment of averaging, it is

suggested that the rule of thumb [3; (C-10)] for the input

signal-to-noise ratio improvement in dB, -5 log A, be used, where

A is the number of independent quantities averaged.
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APPENDIX A. SIMPLIFICATION OF SUMS (76) AND (77)

Here, we will convert the alternating series in (76) and (77)

into finite products that retain significance, even for large

values of K. We begin with the first line of (52) and expand the

power term in a binomial series, obtaining

D M-i

f( ) - M f du exp(i~u-u) (-I)k (Mki) exp(-ku) =

0 k=O

M-1

M II _~ (A-i)

k=O

Now, equate (A-i) to its alternative expression in the last

line of (52), and then replace M everywhere by K+i, getting

K k K+i
(K+I) k T= k -i (A-2)

k=O k=1

Now let z = 1 - iE in (A-2) and simplify; there follows

Kk K
L "K K (A-3)

k=0 z)+

Thus, the alternating series has been converted into a finite

product which is useful for all values of K without loss of

significance.
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The use of (A-3) on (76) yields the result quoted in (78) and

(79) for the first moment y(1). On the other hand, in order to

convert (77), it is necessary to take the preliminary step of

breaking the rational function into two parts according to

(k-b)(k-a) b-a [k-b - (A4

and then to use (A-3) once with z - -1/M and once with z - -2/M.

After manipulation, simplification, and cancellation of common

terms with the square of py(1), the end result for the standard

deviation of RV y is found to be just the second term in (78).

The results in (78) - (79) have been numerically checked with the

original defining integral (72), for j - 1 and j = 2, ior several

values of M and K; they agree within the accuracy of the computer

employed.

A more general result than (A-3) is available by means of a

different approach. First, for general values of a, note that

(a) (-l)k (-a)k 1 1 (z)k (A-5)
k k! k+z z (z+l)k

Then, the following alternating sum can be manipulated into a

more useful form, namely

a (-l) (-a)k (z)k 1 F(-a'z;z+1;1) r(l+a) r(z)
k+z z (z-+lak k! =z• = r(l+a+z)

k=O k=O
(A-6)

where we used [2; 15.1.1 and 15.1.20]. If we set a = K in

(A-6), it reduces to (A-3). (A-6) is also equal to B(l+a,z).
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APPENDIX B. PROGRAMS

There are two programs listed in this appendix, both in BASIC

for the Hewlett-Packard 9000 computer. None of the variables are

declared INTEGER; thus, for example, input parameters N, K, N, L

are all treated as REAL variables throughout.

The first program, listed on pages 42 - 44, requires that the

number of thresholds T be maintained the same when the sizes, M

and K, of the normalizer and or-ing device, respectively, are

changed to N and L. On the other hand, the second program,

listed on pages 46 - 49, allows the number of thresholds to

change from T to U, which can be either larger or smaller.

The listings are heavily keyed to the explicit equations in

the main text; this should enable the user to identify and modify

particular manipulations if desired. It should be noted that, in

the programs, the or-ing size begins at value K and gets changed

to L. If these results are to be compared with the or-ing only

results in the text, where the parameter M was used, it is

necessary to make the switch from K in the program to M in the

text. Example outputs from both programs are presented after the

listing for each case.
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18 ! NORMALIZER & ORING, EQUISPRCED IN POWER, SAME NO. OF THRESHOLDS
20 PI=.85 I SPECIFIED PROBABILITY, (9)
30 Dby=18 ! DECIBEL RATIO OF THRESHOLDS, (10)
48 T=7 I NUMBER OF THRESHOLDS, (10)
50 M=8 1 INITIAL NORMALIZER SIZE > 2, (62)
68 0 FOR NO INITIAL NORMALIZATION, THAT IS, M INFINITE, SET M <= 2
70 K=12 I INITIAL OR-ING SIZE > 0, (63)
80 N=16 1 NEW NORMALIZER SIZE > 2, (81)
90 1 FOR NO NEW NORMALIZATION, THAT IS, N INFINITE, SET N <= 2

108 L=24 I NEW OR-ING SIZE > 0, (82)
118 Pdl=.5 I SPECIFIED
120 Pd2=.9 I DETECTION
138 Pd3=.99 I PROBABILITIES, (30)
148 PRINT "PI =";PI;" Dby =";Dby;" T =";T
150 PRINT "M =";M;" K =";K;i' N =";N;" L =";L
160 REDIM Y(I:T),Yb(I:T),P(IsT),Z(I:T),Zb(I:T)
178 DIM Y(99),Yb(99),P(99),Z(99),Zb(99)
180 Rk=l/K 1 (67)
190 RI=I/L I (84)
200 IF M>2 THEN 380
218 FI=F2=8 I M INFINITE
228 FOR Ms=l TO K !(56), m
238 RI=I/Ms
240 FI=FI+R1
258 F2=F2+RI*R1
268 NEXT Ms
278 Muy=F1 I (56)
280 Sigy=SQR(F2) 1 (56)
298 GOTO 390
300 RIUI/M I M > 2
318 R2=2/M
328 FI=F2=1
338 FOR Ks=l TO K 1 (79), k
348 FI=FI*Ks/(Ks-R1) 1 (79)
358 F2=F2*Ks/(Ks-R2) 1 (79)
368 NEXT Ks
378 Muy=M*(FI-1) 1 (78)
380 Sigy=M*SQR(F2-FI*F1) 1 (78)
390 IF N>2 THEN 498
408 GI=G2=8 I N INFINITE
410 FOR Ns=l TO L 1 (61), n
428 RI=I/Ns
430 GI=GI+RI
448 G2=G2+RI*RI
450 NEXT Ns
460 Muz=GI ! (61)
470 Sigz=SGR(G2) I (61)
488 GOTO 580
490 RI=I/N I N > 2
580 R2=2/N
510 GI=G2=1
520 FOR Ks=l TO L 1 (86), k
530 GI=GI*Ks/(Ks-RI) 1 (86)
548 G2=G2*Ks/(Ks-R2) 1 (86)
550 NEXT Ks
568 Muz=N*(GI-1) 1 (85)
578 Sigz=N*SQR(G2-GI*G1) 1 (85)
588 PRINT "Muy =";Muy,;" Sigy ="ISigy
598 PRINT "Muz -";Muz;" Sigz =";Sigz
688 PRINT
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618 I EQUISPACED IN DECIBELS: REMOVE 888-970 AND INSERT 620-710
620 I R=I-PI^Rk I (9) & (67)
638 1 IF M>2 THEN 660
648 1 YI=-LOG(R) I (58)
658 1 GOTO 670
668 ! YI=M*(RA(-1/M)-I) 1 (67)
670 8 D1=1e*LGT(Y1) 1 (14)
680 I Deld=Dby/(T-1) 1 (15) & (16)
698 1 FOR Ts=1 TO T I (16)l t
7800 Dt=DI+Deld*(Ts-1) 1 (16)
710 I Y(Ts)=Y=18^(Dt/18) 1 (17)
728 I PRESET CONSTANTS: REMOVE 888-988 AND INSERT 730-760
738 ! DATA 1,3,5,7,918,11 ! USER MUST INPUT T NUMBERS
740 1 READ Yb(*) I NORMALIZED Y THRESHOLDS
750 I FOR TszI TO T I (18)o t
760 1 Y(Ts)=Y=Muy+Sigy*Yb(Ts)I (18)
778 1 PRESET PROBABILITIES: REMOVE 880-1038 AND INSERT 780-870
788 1 DATA .9,.99,.999,.9999,.99999,.999999,.9999999
798 1 READ P(*) I (19)
888 I FOR Ts=l TO T I (19), t
810 1 P=P(Ts)
820 1 R=I-P^Rk I (58)
830 I IF M>2 THEN 868
848 ! Y(Ts)=Y=-LOG(R) 1 (58)
858 I GOTO 878
860 ! Y(Ts)=Y=M*(R^(-1/M)-I) 1 (9) & (67)
870 I Yb(Ts)=(Y-Muy)/Sigy i (12)
88s R=I-PI^Rk I (9) & (67)
890 IF M>2 THEN 920
908 YI=-LOG(R) 1 (58)
910 GOTO 938
928 YI=M*(R^(-I/M)-I) 1 (67)
938 Ay=1I^(Dby/10) 1 (10)
948 Ytc=YI*Ay (10)
958 Dely=(Ytc-Y1)/(T-1) 1 (11)
968 FOR Ts=l TO T I (11), t
978 Y(Ts)=Y=YI+Dely*(Ts-1) 1 (11)
988 Yb(Ts)=(Y-Muy)/Sigy 1 (12>
998 IF M>2 THEN 1820

1088 R=EXP(-Y) I (57)
1818 GOTO 1038
1828 R=(I+Y/M)^(-M) I (13) & (66)
1838 P(Ts)=P=(1-R)^K 1 (66)
1848 Q=I-P^RI I (84)
1050 IF N>2 THEN 10880
1068 Z(Ts)=Z=-LOG(Q) 1 (21) & (60)
1078 GOTO 1098
1880 Z(Ts)=Z=N*(Q^(-I/N)-I) f (21) & (84)
1090 Zb(Ts)=(Z-Muz)/Sigz I (22)
1180 NEXT Ts
1118 Dbz=1*LGT(Z(T)/Z(1)) I (23)
1128 PRINT " Y THRESHOLDS NORMALIZED PROBABILITIES"
1138 FOR Ts-1 TO T
1140 PRINT Y(Ts),Yb(Ts),P(Ts)
1158 NEXT Ts
1160 PRINT
1170 PRINT " Z THRESHOLDS NORMALIZED PROBABILITIES"
1188 FOR Ts=l TO T
1198 PRINT Z(Ts),Zb(Ts),P(Ts)
1288 NEXT Ts
1218 PRINT
1228 PRINT "Dbz ="iDbz
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1230 PRINT
1240 PRINT " Pdl =";Pdl;" Pd2 =";Pd2;10 Pd3 =";Pd3
1250D PRINT
1260 PRINT "SIGNAL-TO-NOISE RATIOS (DB) FOR INITIAL TRANSFORMATION,:1
1270 IF M1>2 THEN 1400
1280 FOR Ts=1 TO T 1 (94),t
1290 Y=Y(Ts,)
1300 Q=(1-EXP.-Y))-'(K-1) i (95)
1310 D1=-L0Gy1-(1-Pdl),O) 1 (94)
1328 Rtl=Y/DI-1 I (94)
1330 D2=-LOG(1-(1-Pd2),g)
1340 Rt2=Y/D2-1
1350 D3=-LOG(1-(1-Pd3>,Q)
13610 Rt3=Y/D3-1
1370 PRINT I0*LGT'(RtI),l0*LG'T(Rt2),10*LGT(Rt3)
1380 NEXT Ts
1390 GOTO 1538
1400 Rm=-1/M I (99)
1410 FOR Ts=i TO T I (99)p t
1428 Ym=Y(Ts)/M I(99) & (100)
1430 0=(1+Ym)A(-M) 1 (100)
1440 1(~)K1 (100)
1450 Dl=(1(1-Pd1)/Q)ARm-1 1 (99)
1468 Rt.1=Ym/D1-1 I (99)
1470 D2=(1.(1Pd2)/ >A Rm-1
1480 Rt2=Ym/D2-1
1498 D3 =(1-(1Pd3)/Q)ARm-1
1500 Rt3=Ym/D3-1
1510 PRINT l0*LGTt(Rt1),1e*LGT(Rt2),1O*LGT(Rz3)
1520 NEXT Ts
1530 PRINT
1540 PRINT "SIGNAL-TO-NOISE RATIOS (DE) FOR NEW TRANSFORMATION:"
1550 IF N>2 THEN 1680
1560 FOR Ts=I TO T I SIMILAR
1570 Z=Z(Ts) I TO
1580 Q=(1-EXP(-Z))A(L-1) 1 (940
1590 Dl=-LOG(1-(1-Pdt),gQ) I &
1688 Rtl=2/D1-1 1 (95)
1610 D2=-LOG(1-(1-Pd2),g)
1628 Rt2=2/D2-1
1630 D3=-LOG<1-(1-Pd3)/Q)
1648 Rt3=Z/D3-1
1650 PRINT lO*LGT(RtI,1lO*LGT(Rt2),Ie*LGT(Rt3)
1660 NEXT Ts
1670 GOTO 1810
1680 Rn=-1'H i SIMILAR
1690 FOR Ts-i TO T I TO
1708 Zn=Z(Ts)'t4 I (99)
1710 Qin(1+Zn)A(-N) I &
1720 1=1Q-L1 (100)
1730 Dl=<n(1I(.-Pd )/Q>A Rn-1
1740 Rtl=Zn/D1-1
1750 D2=(1-(1-Pd2)/o)ARn-1
1760 Rt2-Zn/D2-1
1770 D3(-IP3/)~-
1780 Rt3=2n/D3-t
1790 PRINT l0*LGT<RtD),1*LGT(Rt2),18*LGT(Rt3)
1800 NEXT Ti
1810 PRINT
1820 END
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P1 = .85 Dby = 10 T = 7
M = 8 K = 12 N = 16 L = 24
Muy = 3.94631506068 Sigy = 2.09538979024
Muz = 4.32438211761 Sigz = 1.69328544323

Y THRESHOLDS NORMALIZED PROBABILITIES
5.7885601983 .841810653879 .85
14.2714084957 4.92752493268 .996679075641
22.8342407932 9.81403921147 .999753631023
31.3970810906 13.1005534963 .999965311792
39.9599213881 17.1870677691 .99999288763
48.5227616855 21.2735820479 .999998067526
57.085601983 25.3600963267 .999999374796

Z THRESHOLDS NORMALIZED PROBABILITIES
5.86721821227 .911149446675 .85
11.8779764465 4.46091021044 .996679075641
16.8824176865 7.36912785339 .999753631023
21.0784326281 9.89440414638 .999965311792
24.909916314 12.1571553566 .99999280763
28.4120734509 14.2254168838 .999998067526
31.6575625522 16.1420985125 .999999374796

Dbz = 7.32045232969

Pdl .5 Pd2 - .9 Pd3 = .99

SIGNRL-TO-NOISE RATIOS (DB) FOR INITIAL TRRNSFORMATION:
7.18029486646 16.5239686654 26.8808804974
12.6997498763 21.2426978346 31.503743108
14.8466399857 23.3091924052 33.5584316626
16.269595645 24.6986419313 34.9428284925
17.3396310658 25.7492651765 35.9905902914
18.1963923488 26.5945353622 36.8340131363
18.9120679996 27.3017783991 37.5399641554

SIGNRL-TO-NOISE RATIOS (DB) FOR NEW TRANSFORMATION:
7.40601673703 16.6306689407 26.9721139815
11.9559811212 20.4527339701 30.7066466017
13.5624054665 21.9841310487 32.2269170012
14.587035072 22.975309045 33.2129962117
15.3357177535 23.704135924 33.9387696157
15.922698397 24.2777465869 34.5103143719
16.4038217386 24.749160188 34.9802228898
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18 ! NORMALIZER & ORING, EQUISPACED IN POWER, DIFF. NO. OF THRESHOLDS
28 P1=.85 I SPECIFIED PROBABILITY, (9)
38 Dby=18 I DECIBEL RATIO OF THRESHOLDS, (10)48 T=? I INITIAL NUMBER OF THRESHOLDS, (10)
58 U=15 I NEW NUMBER OF THRESHOLDS, (24)68 M=8 i INITIAL NORMALIZER SIZE > 2, (62)70 I FOR NO INITIAL NORMALIZATION, THAT IS, M INFINITE, SET M <= 2
88 K=12 I INITIAL OR-ING SIZE > 0, (63)
98 N=16 ! NEW NORMALIZER SIZE > 2, (81)108 ! FOR NO NEW NORMALIZATION, THAT IS, N INFINITE, SET N <= 2

118 L=24 I NEW OR-ING SIZE > 0, (82)
120 Pdl=.5 I SPECIFIED
130 Pd2=.9 I DETECTION
140 Pd3=.99 I PROBABILITIES, (30)150 PRINT "P1 =";PI;" Dby =";Dby;" T =";T;" U =";U
168 PRINT "M =";M;" K =";K;" N =";N;" L =";L
178 REDIM Y(I:T),Yb(I:T),P(1IT),Zp(I:U),Zbp(I:U),Pp(I:U)
188 DIM Y(99),Yb(99),P(99),Zp(99),Zbp(99),Pp(99)
198 Rk=I/K I (67>
288 RI=I/L 1 (84)
218 IF M>2 THEN 318
228 FI=F2=0 I M INFINITE
238 FOR Ms=l TO K I (56), m
248 RI=I/Ms
258 FI=FI+RI
268 F2=F2+RI*RI
278 NEXT Ms
288 Muy=F1 I (56)
298 Sigy=SQR(F2) I (56)
388 GOTO 488
318 RI=I/M i M > 2
328 R2=2/M
338 FI=F2=1
348 FOR Ks=Il TO K 1 (79), k
358 FI=FI*Ks/(Ks-R1) I (79)
368 F2=F2*Ks/(Ks-R2) 1 (79)
378 NEXT Ks
388 Muy=M*(FI-1) i (78)
398 Sigy=M*SQR(F2-FI*F1) I (78)
488 IF N>2 THEN 588
418 GI=G2=8 I N INFINITE
420 FOR Hs=1 TO L I (61), n
430 RI=I/Ns
440 GI=GI+R1
458 G2=G2+RI*RI
468 NEXT Ns
478 Muz=Gl ( 61)
488 Sigz=SQR(G2) I (61)
498 GOTO 598
588 RI=I/N I N > 2
510 R2=2/N
520 G1=G2=1
538 FOR Ks=l TO L t (86), k
540 GI=GI*Ks/(Ks-R1) I (86)
558 G2=G2*Ks/(Ks-R2) 1 (86)
568 NEXT Ks
578 Muz=N*(GI-1) I (85)
580 Sigz=N*SQR(G2-GI*GI) 1 (85)
598 PRINT "Muy =";Muy;" Sigy =";Sigy
680 PRINT "Muz =";Muz;" Sigz ="!Sigz
618 PRINT
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628 1 EQUISPACED IN DECIBELS: REMOVE 890-980 AND INSERT 630-720
63e I R=1-PIARk 1 (9) & (6?)
648 ! IF M>2 THEN 670
650 I YI=-LOG(R) I (58)
660 1 GOTO 688
670 I YI=M*(R^(-I/M)-I) 1 (67)
680 i DI=10*LGT(YI) 1 (14)
690 ! Deld=Dby/(T-1) I (15) & (16)
700 I FOR Ts=1 TO T I (16), t
718 ! Dt=D1+Deld*(Ts-1) 1 (16)
720 I Y(Ts)=Y=10^(Dt/10) I (17)
730 1 PRESET CONSTANTS: REMOVE 890-990 AND INSERT 740-770
740 1 DATA 1,3,5,7,9,10,11 I USER MUST INPUT T NUMBERS
750 1 READ Yb(*) NORMALIZED Y THRESHOLDS
760 I FOR Ts=l TO T I (18), t
770 ! Y(Ts)=Y=Muy+SigV*Yb(Ts)I (18)
780 ! PRESET PROBABILITIES: REMOVE 890-1040 AND INSERT 790-880
798 I DATA .9,.99,.999,.9999,.99999,.999999,.9999999
800 ! READ P(*) I (19)
810 I FOR Ts=I TO T I (19), t
820 1 P=P(Ts)
830 ! R=I-P^Rk 1 (58)
840 1 IF M>2 THEN 870
850 I Y(Ts)=Y=-LOG(R) I (58)
860 ! GOTO 880
870 1 Y(Ts)=Y=M*(R^(-1/M)-I) 1 (9) & (67)
888 1 Yb(Ts)=(Y-Muy)/Sigy ! (12)
890 R=I-PI^Rk I (9) & (67)
900 IF M>2 THEN 930
910 Y1=-LOG(R) I (58)
920 GOTO 940
930 YI=M*(RA(-1/M)-I) 1 (67)
940 AV=10O(Dby/10) 1 (10)
950 Ytc=YI*RA 1 (10)
960 Dely=(Ytc-Y1)/(T-1) 1 (11)
970 FOR Ts=I TO T 1(01), t
980 Y(Ts)=Y=YI+DeIy*(Ts-1) I (11)
990 Yb(Ts)=(Y-Muy>/Sigy 1 (12)

1008 IF M>2 THEN 1030
1010 R=EXP(-Y) I (57)
1020 GOTO 1048
1830 R=(I+Y/M)^(-M) I (13) & (66)
1040 P(Ts)=(1-R)^K 1 (66)
1050 NEXT Ts
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1060 QI=I-P(1)-RI 1 (84)
1070 Qtc=I-P(T)^RI 1 (84)
1088 IF N>2 THEN 1120
1090 ZI=-LOG(Q1) I (60)
1100 Ztc=-LOG(Qtc) I (60)
1110 GOTO 1150
1120 Rn=-I/N 1 (84)
1130 ZlIN*(QI^Rn-1) 1 (21) & (84)
1140 Ztc=N*(Qtc^Rn-1) 1 (21) & (84)
1150 Delz=(Ztc-ZI)/(U-1) (24)
1160 FOR Us=I TO U 1 (24), u
1170 Zp(Us)=Z=Zl+Delz*(Us-1)I (24>
1180 Zbp(Us)=(Z-Muz)/Sigz (26)
1198 IF N>2 THEN 1220
1200 Pp(Us)=(I-EXP(-Z))^L I (25) & (59)
1210 GOTO 1230
1220 Pp(Us)=(I-(I+Z/N)^(-N))^L 1 (25) & (83)
1230 NEXT Us
1240 Dbz=10*LGT(Zp(U>/Zp(1))! (23)
1250 PRINT " Y THRESHOLDS NORMRLIZED PROBABILITIES"
1268 FOR Ts=l TO T
1270 PRINT Y(Ts),Yb(Ts),P(Ts)
1280 NEXT Ts
1290 PRINT
1300 PRINT " Z THRESHOLDS NORMALIZED PROBABILITIES"
1310 FOR U$1s TO U
1320 PRI-T Zp(Us),Zbp(Us),Pp(Us)
1330 NEXT Us
1340 PRINT
1350 PRINT "Dbz =";Dbz
1360 PRINT
1361 PAUSE
1370 PRINT Pdl =";Pdl;" Pd2 =";Pd2;" Pd3 =";Pd3
1380 PRINT
1390 PRINT "SIGNAL-TO-NOISE RATIOS (DB) FOR INITIAL TRANSFORMATION:"
1400 IF M>2 THEN 1530
1410 FOR Ts=l TO T 1 (94), t
1420 Y=Y(Ts)
1430 Q=(I-EXP(-Y))^(K-1) I (95)
1440 DI=-LOG(I-(1-Pdl)/Q) 1 (94)
1450 Rtl=Y/DI-1 1 (94)
1460 D2-LOG(1-(1-Pd2)/Q)
1470 Rt2=Y/D2-1
1480 D3=-LOG(I-(1-Pd3)/Q)
1490 Rt3=Y/D3-1
1500 PRINT 10*LGT(Rtl),10*LGT(Rt2),10*LGT(Rt3)
1510 NEXT Ts
1520 GOTO 1660
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1530 Rm=-1/M 1 (99)
1540 FOR Ts~l TO T I(99), t.
1550 Ym=Y(Ts)/t1 i (99) IL (100)
1560 0=(1+Yrn)-(-M) i (100)
1570 1=1QAK1 (100)
15980 D1=(1-(1-Pdl)/Q)ARm1 (99)
1590 RtI=Ym/D1-l I (99)
1600 D2=(1-<1-Pd2)/Q)-Rm-1
1618 Rt2=Ym/D2-1
1620 D3=(1-(1-Pd3)/Q)^'Rm-1
1630 Rt3=Ym-'D3-1
1640 PRINT 18*LGT(RtI),18*LGT(Rt2),18*LGT(Rt3)
1650 NEXT Ts
1660 PRINT
1670 PRINT "SIGNAL-TO-NOISE RATIOS (DB) FOR NEW TRANSFORMATION:"
1688 IF N>2 THEN 1818
1698 FOR Us=1 TO U I SIMILAR
1788 Z=Zp(Us) I TO
1718 Q=(1-EXP(-~Z))-(L-l) 1 (94)
1728 D1=-LOG(1--(1-Pdl)/Q) I &
1738 RI=Z/DI-1 (95)
1740 D2=-LOG(1-(1--Pd2)/Q)
1758 R2=Z-'D2-1
1760 D3=-LOG(1-(1-Pd3)'Q)
1770 R3=Z/D3-1
1788 PRIN4T 10*LGT(Ri),10*LGT(R2),18*LGT(R3)
1790 HEX'. ~is
1800 GOTO 1940
181e Rn=-1/H I SIMILAR
1820 FOR Usul TO U 1TO
1838 Zn=ZP(Us)/H 1 (99)
1840 0=(1+Zn)A(-N) iI &
1858 Q(~)(~)i (100)

1870 R1=Zn/Dl-l
1888 D2=(1-(1-Pd2'½'Q)^Rn-I
1890 R2=Zn'D2-1
1988 D3=(1-(1-Pd3)/Q)ARn-1
1918 R3=Zn'D3-1
1928 PRINT 10*LGT(RI),18*LGT(R2),18*LGT'R3)
1930 NEXT Us
1948 PRINT
1950 END
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P1 = .85 Dby = 18 T a 7 U = 15
M = 8 K = 12 N = 16 L = 24
Muv = 3.94631506068 Sigy = 2.89538979024
Muz = 4.32438211761 Sigz = 1.69328544323

Y THRESHOLDS NORMALIZED PROBABILITIES
5.7085601983 .841810653879 .85
14.2714004957 4.92752493268 .996679075641
22.8342407932 9.01483921147 .999753631823
31.3978810906 13.1885534983 .999965311792
39.9599213881 17.1878677691 .99999288763
48.5227616855 21.2735828479 .999998067526
57.885681983 25.3600963267 .999999374796

Z THRESHOLDS NORMALIZED PROBABILITIES
5.86721821227 .911149446675 .85
7.70938566512 1.99907437995 .956529647638
9.55155311797 3.88699931323 .98667584332
11.3937285788 4.1749242465 .99560662072
13.2358888237 5.26284917978 .99844?887595
15.8780554765 6.35877411306 .999415549265
16.9282229294 7.43869904633 .999767363279
18.7623983822 8.52662397961 .999902645376
28.6845578351 9.61454891288 .999957385298
22.4467252879 10.7824738462 .999980574274
24.2888927488 11.7903987794 .999990813211
26.1318681936 12.8783237127 .999995587461
27.9732276465 13.966248646 .999997734746
29.8153958993 15.0541735793 .999998825244
31.6575625522 16.14289851'5 .999999374796

Dbz 7.32845232969

Pdl = .5 Pd2 = .9 Pd3 = .99

SIGNAL-TO-NOISE RATIOS (DB) FOR INITIAL TRANSFORMATION:
7.18029480646 16.5239686654 26.8888804974
12.6997498763 21.2426978346 31.583743108
14.8466399857 23.3891924052 33.5584316626
16.269595645 24.6986419313 34.9428284925
17.3390310658 25.7492651765 35.9905902914
18.1963923488 26.5945353622 36.8348131363
18.9120679996 27.3817783991 37.5399641554

SIGNRL-TO-NOISE RATIOS (DB) FOR NEW TRANSFORMATION:
7.48601673783 16.6386689407 26.9721139815
9.64374630239 18.3783967446 28.6551266507
18.8741086655 19.4515699092 29.7168048237
11.7563696979 20.2655149832 38.5212118685
12.4659011251 20.9347216111 31.1845531717
13.0688388962 21.5892203112 31.7549390839
13.5941676551 22.8147264365 32.2573356581
14.0624498591 22.4668270369 32.7869765459
14.4847595558 22.8760283338 33.1141652155
14.8694755601 23.2498575248 33.4863332091
15.2228081965 23.5940083337 33.8290789181
15.5495188383 23.9128683228 34.1467104786
15.8533583185 24.2098871812 34.4426853709
16.1373831597 24.4878896233 34.7197662984
16.4838217386 24.749160188 34.9802228898
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APPENDIX C. CORROBORATION OF PAGE 28

The CF corresponding to PDF py(u) in (68) is

1

K exp(-i&M) f dx (l-x)K-1 exp(i&Mx-1/M, (C-1)

0

where we let x = (1 + u/M)-M. Therefore

M-1 .

f (E) exp(i&M) - K 7! ) dx (1-x) K-ias 0, (C-2)
0

where we expanded the second exponential in (C-I) in a power

series, and have recognized that the integrals in (C-2) only

converge for j < M. That is, (C-2) is an asymptotic expansion

about & = 0, up through order M-i.

We now employ [1; 3.191 3 and 8.384 1] plus an extended

version of the products in (79), namely

K PI

F.j = I for 0 1 j < M , (C-3)

k-i M

to get, from (C-2),

M-1

fy(&) exp(iZM) j! Fj as & 4 . (C-4)
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Now let new RV q be defined as

q 1+ . (C-5)

Then its CF is, upon use of (C-4),

f q() - exp(i~q) . - exp(i~y/M + it) = fy (/M) exp(i&) =

M-1

Therefore, the moments of RV q, up through order M-i, are

directly just the products {Fj} defined in (C-3), namely

liq(j) = F. for 0 1 j < M . (C-7)

The usual rules [4; page 70, (3.41)] for proceeding from moments

(Pq(j)) to cumulants {Xq((j) apply, at least for j < M.

From (C-5), since y = M(q-1), the moments of RV y are

Iiy (i) = y) I . M (q-1)I = Hj (_1)n (1 luq(ij-n) for j < M

n-0 (C-8)

This result analytically confirms the conjecture on page 28. The

cumulants for y follow readily from (C-5) as

Xy(l) = M[Xq(l) - 11

Xy(J) - MJ Xq(j) for 1 < j < M . (C-9)
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APPENDIX D. CHARACTERISTIC FUNCTION FOR PDF (68)

An asymptotic expansion for CF fy (&) was derived in (C-4).

Here, we will derive a closed form for this CF in terms of

exponential integrals.

AVERAGING A NONLINEAR TRANSFORMATION OF RV y

Suppose a positive RV y is subject to a nonlinear

transformation, giving output g(y). The average of this latter

quantity is

g(y) - du g(u) p y(U) , (D-l)

0

where py(u) is the PDF of RV y. If we integrate by parts on

(D-1), there follows

g(y) = g(0) + f du g'(u) [1 - Cy (u)] , (D-2)

0

assuming Cy(0) = 0 and

lim g(u) [1 - C (U)] = 0 . (D-3)
u*+0 y

Result (D-2) is an alternative to original definition (D-1);

an example was utilized in (70).

An example of nonlinear transformation g(u) is

g(u) - exp(itu) , g'(u) = i& exp(i~u) , (D-4)
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for which (D-1) and (D-2) become

f( ) - g(y) - exp(i&y) - f du exp(iu)u) (u) - (D-5)

0

0

- 1 + i•_ J du exp(i~u) (1 - Cy(U)] (D6

0

Requirement (D-3) is satisfied, since Cy(u) 4 1 as u 4 +w.

DERIVATION OF CHARACTERISTIC FUNCTION

The CDF of the RV y of interest is given in (66).

Substitution of (D-4) and (66) into (D-6) yields

fy( = 1 + i& f du exp(itu) 1 1 1- ( + )jM}
0

SK u0Mk
-1 + i& du exp(i~u) K. (.)kll (K(1 + M)-M

0 k-i

K ®

= 1 + i& • (-I)k-1 (K) f du exp(i~u) (D-7)
k-i 0 (1 + u/M)Mk

where we used (74).

Now define

E n(z) a exp(z) En(z) for n Ž 1 , (D-8)
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where En(z) is the exponential integral of order n [2; 5.1.4].

Also, let x = 1 + u/M in (D-7), thereby leading to

f (&;) = 1 + iU4&**M (_)k-1 (K) f dx exp(iUmx-iE&M)

k=l 1 x

K

=1+ itm (-1)k-1 (K) lik(-iU4) .(D-9)

k-l

This closed form for the CF could utilize the recurrence

relations (2; 5.1.14] for the exponential integrals, namely

Ej(Z)= exp(z) Ej(z)

1= 1- z Enl(z)I for n Z 2 . (D-10)

However, this recurrence looks troublesome for large z, due to

its alternating character. Also, there appears to be a similar

problem with alternating series (D-9) for large K. These latter

results were not evaluated numerically.

If we start instead with PDF (68), the CF for y is given by

SK-i1 -Mk-M- 1

f~ K fO du exp(i~u) K- (-l) k (K-1) (1 + R)=k--

0 k=0

K-1

-KM E (-1)k (K k 1) k+M+1(-iU4) .(D-11)

k=0

This is an alternative equivalent closed form to (D-9) for the CF

of RV y.
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A couple of special cases of the above results are listed

below. For K - 1,

f y(E) - M EM+(-i&M) - 1 + iM E_(-iM) , (D-12)

while for K = 2,

f y() = 2M[EM+I(-iHM) - E2 M+l(-iEM)] . (D-13)

Finally, we have, directly from the PDF in (68), the CF of RV

y in the form

S-MK-1 --

f K du exp(i~u) 1 - + (1 + (D-14)

0

Since the integrand decays as u-M-1 for large u, this is an

attractive numerical form for M > 3. And since decent

normalization is only attained for large M, form (D-14) is a very

promising candidate for an FFT approach in these cases.

POST-AVERAGING OF RANDOM VARIABLE y

Suppose that independent RVs fyj) are subjected to further

averaging according to

J v - • yj •(D-I15)

Then the CF of RV v is a power of the CF of RV y:
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f (E ) If ( M (D-16)

This is the reason for the emphasis, above, placed on obtaining

the CF of RV y.

However, suppose that the numerical evaluation of CF fy () is

subject to some error; for example, the FFT evaluation of (D-14)

would suffer aliasing in the & d~main due to the necessity of

sampling the integral on u. Therefore, let an estimate of f (y)

be available as

f y() = fy () + a(&) , (D-17)

where a(&) is an aliasing component. Then, the accompanying

estimate of the CF of RV v is available according to

J J afJ-1fv(•) [ (•)] = [f&(•) + a(&)] f (•) + J f (M) a(&)
v&) 1 y M fy v y

(D-18)

where aliasing error a(&) is presumed small. In particular, the

estimate of the CF of RV v at the origin is

I (0) z 1 + J a(O) . (D-19)

If the error in this estimate is desired less than 1E-15, for

example, then the aliasing component at the origin must be

bounded according to

Ja(O)[ < .1 10-1 (D-20)
J
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The larger J is in the average (D-15), the tighter is this bound

in (D-20). Satisfaction of bound (D-20) will set the increment

a to be used in approximating integral (D-14).
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SPECTRA AND COVARIANCES FOR "CLASSICAL" NONLINEAR SIGNAL

PROCESSING PROBLEMS INVOLVING CLASS A NON-GAUSSIAN NOISE

PART I. ANALYTIC RESULTS AND NUMERICAL EXAMPLES

1. INTRODUCTION

Non-Gaussian noise fields play a critical r6le in modern

signal processing because of the frequently dominant effects of

such noise and interference in a wide variety of applications.
Communication theory generally, and specifically telecommunica-

tions, electromagnetic and acoustic scattering, man-made and
natural ambient noise, optics, and underwater acoustics, are

common areas of interest in this respect. In the present report
we are concerned primarily with underwater acoustic noise
phenomena, but the models and results are canonical, that is,

they take forms invariant to the particular physical application

in question.
Specifically, we are concerned with various second-order

statistics of non-Gaussian noise processes and fields after they
have been subjected to different types of nonlinear operations,

such as rectification and modulation. A generic problem here is

the passage of non-Gaussian noise through a zero-memory nonlinear

(ZMNL) device. The desired output statistics are typically the
mean (dc), mean intensity (power), the covariance or correlation

function, and the associated spectra. These last include

wavenumber spectra in the case of noise fields, as well as the
more general frequency-wavenumber spectra obtained by joint

temporal and spatial Fourier transformations. Typical "class-

ical" problems include: (i) rectification, (ii) determination of

output spectra and covariances, (iii) calculation of (output)

signal-to-noise ratios, (iv) modulation, (v) demodulation, and
(vi) special systems, as for example, the spectrum analyzer.

These and other problems involving ZMNL devices are described in

detail in [1; chapters 5 and 12 - 17]. What is new here is the
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use of the approximate second-order probability density functions

and characteristic functions in the above applications when the
noise processes are non-Gaussian.

A full treatment is given in a current study by Middleton,
[2], which is an expanded version of his recent paper [3], which

employs some of the results of the present report, namely, the
ralculated covariances and spectra. Here, we are content to

summarize the pertinent analytic results, the corresponding
examples of calculated covariances and spectra, and the various
computational procedures associated with their evaluation. The

details of the derivations are provided in [2] and [3]. Included
here, also, is a selection of illustrations of the analytic
results.

2. ANALYTICAL RESULTS: A SUMMARY

In the present study, we address three classical problems
where the goals are the calculation of the covariance and

associated intensity spectrum. Specifically, we consider:
Problem I. The half-wave v-th law rectification of Class A

noise fields and processes;
Problem II. Phase modulation of a carrier by a Class A noise

process; and

Problem III. Frequency modulation of a carrier by a Class A
noise process.

Class A noise, as noted in section 3 of (2], (3], is a
canonical form of interference characterized by a coherent
structure vis-&-vis the (linear) front-end stages of a typical

receiver: negligible transients are produced at the output of

these stages. Class B noise, on the other hand, is incoherent
and highly impulsive, such that the front-end stages of the
receiver generate an output which consists solely of (over-
lapping) transients. Here, the Class A models are tractable in

the required second-order distribution and characteristic

functions, whereas the Class B models are not and must

2
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consequently be appropriately approximated in second-order; see
[4] and [5] for additional information. In the present report,
we shall consider examples of Class A noise only.

2.1 THE SECOND-ORDER CLASS A CHARACTERISTIC FUNCTION

In applications [1] - [3], the second-order characteristic
function, F2 (i'&li& 2 ), plays a key r8le: from it, we may obtain
the aforementioned statistics of the outputs of ZMNL devices,
spectra of angle-modulated carriers, and other usually second-
order statistics of various nonlinear operations arising in a
variety of communication and measurement operations.
(See [2], [3] for further discussion.)

Here, we specifically use the approximate Class A noise

characteristic function, F2 , including an additive Gaussian
component, given by

® ml+m2

F 2( i~ l~ i•2) A+G , exp [-A (2-p )] [A ( 1-P )] m 2

m1 ,m 2= i

x • on 9•l- ½ n~ o+n ' 1Y]
n-0 ' 2

where A (-AA) is the "overlap" index, and where

(2) 2 2 + 2 2 + 2&E K(n) (2.2a)
Qm1 +n,m 2 +n2 1'12Y n1 m•m+n + 2  m 2+n 1 2 L+G

2 m + r, r 2A; Q 2 A<B 2 > - A<L2 >; r, - aG/2 (2.2b)
m+n A) 2A 2A G2A

L+ (n (n kL/A + Gr12; (2.2c)
KL) G LrA 22A

and kL, kG are the normalized covariances of the non-Gauss and
Gauss components, respectively. Thus, IkL,G I 1.

3
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Here, p (-PA) is the "overlap" correlation function

{ 1 - Ajt'j for PI' 1 1 A 1/Ts
U ,') -,l=Ti , (2.3)

in which T Sis the mean duration of a typical noise-signal of
intensity <B 2>/2 =<L 2>. The time delay T, is given by

T= r - ®R or T' - T (= t 2 -tl) ,(2.3a)
c02

respectively, for space-time fields and received temporal
processes. The path delay AR/co (= IR2 - R11/co) accounts for

the time differential between propagation paths to the points at
which processing occurs, cf. figure 2.1 ff, Case A. The

quantities 2 2A and a are, respectively, the intensity of the
non-Gaussian and Gaussian components which constitute the general

Class A model used here. (However, we note that the present

Class A model belongs either to the strictly canonical Class A

cases, where all interfering sources are equidistant from the

observer, or more generally, to the much broader class of

situations in which the effective source distribution is

concentrated in an annulus whose inner-to-outer radii have a
ratio 0(1/2) or less. The former is exactly represented by (2.1)

to second-order, while the latter is approximately so

represented, albeit a good approximation as long as the

aforementioned source annulus is not too large. See

[5; section V, C], for example. For an exact treatment, see also

[6], in an important class of physical models. Finally,

differentiation of F2 , (2.1), in the usual way, gives us the

(exact) covariance of the composite Class A and Gauss field,
namely,

n eG a 2  F 
A K G ' 

(2.4)KA+G 1 3&2 21it= 2 XO0

which in normalized form is

4
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kL +r r'kG
kA+G(ARr) 1 + rG (2.4a)

In practice, A is usually less than unity, say 0(0.1 - 0.3)
m 1+m2 +1n

typically, so that only a comparatively few terms in A are

needed for numerical evaluation of (2.1) and the statistical

quantities derived from it, cf. section 2.2 ff. Note that when

AIrf 1 1, p - 0, and r'- 0, we get

[e - [. a exp ltl2j1 [e-A A! exp(12 a 2)

m=0 11 n-0

= Fl(iYl)A Fl(it 2 )A , (2.4b)

as expected: there is now no correlation between process samples.
With a Gaussian component, these will be correlated, of course,

unless Irl - w, so that k G 4 0, cf. (2.2c).

2.2 PROBLEM I: HALF-WAVE v-TH LAW RECTIFICATION

(STATIONARY AND HOMOGENEOUS FIELDS)

Here we consider the problem of obtaining the second-order

(second-moment) statistics, My, of a sampled noise field, a(R,t),
after passage through a ZMNL device, g, when the noise is

generally non-Gaussian. Various processing configurations are
possible. We show two in figure 2.1, below. Analytically, we
have, for stationary and homogeneous inputs [1; section 2.3-2]

My (AR,r) = g(x 1 )g(x 2 ) 2 f f f(i&l) f(i&2)
( CC

2

X F 2(El"iZ2 ;ARfr)x d•1 d&2 ' yl Y2 '(2.5)

5
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where AtR = R 2 -R1 0, T = t2-t1 , and f(i&) is the Fourier transform

of the ZMNL device with y1 = y(Rl1 tl), etc. In the present

cases, we have specifically

f(im a r(v+1)/(i&)v 1 V > -1 ,(2.6)

for these half-wave v-th law rectifiers [1; (2.l01a,bfl.

SPATIAL SAMPLING - -SIGNAL PROCESSING

2-SENSOR ARRAY ZMNL

1~
y( 11(t)yRR 2  N(tRt

yly

a(R,t) Af

R

X(t 2 t1 T) y(t1 +T)

Figure 2.1 A. Two-point sensor array (R 2) giving sampled field

at two space-time poinits. B. A general array (R) (preformed

beam), converting the field a(R,t) into a single (time) process

x(tl). Both are followed by ZMNL devices, delays, and averaging,

as indicated schematically.

6
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For the Class A non-Gaussian noise inputs of section 2.1
above, we find that the (normalized) second-moment My for the
resulting rectified field is now

t A(1-p)]ml m2t (p

My(AR,) - exp[-A(2-p)] amLI [AI' l2: n:
m1 ,m2 0 n=O

n~l v/2 fn+m2  v/2
x I + r' - + r' B VIml,m2,n (2.7)

where we have further postulated the noise field to be isotropic,

AR 4 I&RI, and where specifically,

BIa E BVY 11m2in (Nr2(Ž1) 2F&1(- (Y- n)=r22

+ 2Ya r 2(2 Fi l~- ,v3;2 (2.7a)

n k + r' kY a G ; a - (ml'm2"n) IYa I 1 1

+ r' (m2+n + r' (2.7b)

Specifically, also, we have the following normalized forms

My a My/2 2A2/ 4n f' a Pr' A - I/Ts, cf. (2.3)

AR E AR/AL AL - correlation distance, AR = I1R2 -R 1 1 . (2.8)

For numerical results, we select the following models for the

space-time covariance functions of the isotropic and stationary
non-Gaussian and Gaussian components of the input noise field:

kL exp(-AR2 /AL L i(AWL T'/A) 2  - expPiR2 - AW Lf) 2 (2.9a)

kG exp(-AR2 /A2 - I(AwGr'/) 2) exp[-AR 2 (AL/AG) -^(2 Gf2_ 1 ;

7
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L ra AW L Aw G a AW G (2.9b)

Here, A G is a correlation distance, and Aw LI AwG are angular

frequency spreads associated with the respective non-Gaussian and

Gaussian components of the input field. Note that if we define

the correlation distance A L as that where k L - 1/e (f, - 0),

then A L - AR L , etc.

For the special cases of v considered here, we also observe

(from [1; (A.1-39)]) that B V may be expressed in closed form:

BO(Y) - n + 2 arcsin(Y) , (2.10a)

Bj(Y) - Y arcsin(Y) + 1 - Y 2)ý + ITY (2.10b)2

B + y2)(Iý + arcsin(Y) ) + I Y (1 _ y2)h (2.10c)2(y) 2 2 2

2.2-1 GAUSS PROCESSES ALONE (A-0)

When only a Gauss noise field is originally present, that is,

A - 0, for example, 2 2A - 0, (2.7) reduces to the classical

result [1; page 541, (13.4a)]:

A A
M, M M - Bv M Y Yo = k (2-11)
y YJA-0 a-0 y 4n y a G'

For comparison with the non-Gaussian cases (A>O), we choose to

have equal input noise intensities. This means that

2 + 2 2 + v)
+A=0 = QG 2A 2A(l

so that

V
M YIA-0 - (l + r') B vIa=0 Yo ý k G (2.12)

A

and M' is then to be compared with M A > 0. When r, is small,

as is usually the case, we can often replace (1 + r') V by unity.

8
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At this point, following figure 2.1, we distingu'sh two
classes of operation: (A), where a pair of point sensors is used
to sample the noise field and we wish to consider both the space
and temporal correlations of the sampled field at the two points
(Rl,tl), (R2 1 t 2 ); and (B), where the space-time field is
converted into a random process, x(t), by the beamforming array
(R), with an associated directionality embodied in the resultant
beam (vide [7; sections IV B and VI A]).

2.2-2 CASE B, FIGURE 2.1

Let us consider the simpler case (Case B) of the time process
first, cf. (B). For this, we set AR - 0 formally in (2.7) et
seq. above, since x - R a(R,t) here and T' - t 2-_t" cf.
(2.3a). See also [3; (3.2) et seq. and (3.11a)]. Then our ad
hoc illustrative models of the process covariances kL, kG, are,
from (2.9a,b), at once

kL kL() - expi- (ALf/A) 2 ) - exp(-½ (tLf) 2 ) , (2.13a)

k-kG - exp( j(AwGf/p)2 ) - exp( 1(Gr f) 2] • (2.13b)

Accordingly, (2.7) reduces to

Case B: My(Of) a M y(f)B - (2.7), with Ya = (2.7b),

and (2.13a,b) and AR = 0 therein. (2.14)

We note that when Ijf I 1, p - 0, and My (0,,If k 1) reduces to a
simpler relation [vis-&-vis (2.7)], viz.:

A physically der.ived model of kG and kL may be made fromA A GL ybm efo
(3; (3.11a)] with L - R L, R - (2.9) etc., where L is typically
given by (3; (3.3)], for example.

9
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m~~ 1+2v/2v/-- yfB"e- 2A A- mA + r,'2 r,'

My)B Aimn! 2= 2 ! ii I mAa
m1 m2O0

(2.14a)
where (2.7b) becomes

F' kG

i a = - 0 (2.14b)
[M1+ [T- + r

in B via*

Special cases of interest are:

I. THE INTENSITY E(y2): f 2 0, p = 1, I m2 - 0, and (2.7),

(2.14) reduce to

Y21 A A 1 -A E An I

norm " y(0}B y(00 v Ba=n n!. +A '
n-0

(2.15)

where now Ya-n M 1, e.g., kL(O) = 1 etc., and BV is independent

of n, for example, for Ya = 1,

2ir for v= 0'

ir = 1 , cf. (2.10) • (2.16a)

U3/2 for y -

For general v, Ya - 1, we have (from [1; (A.1-34)])

B vla=n = 2nhr(v+½) , k Ž 0 . (2.16b)

Thus, (2.15) becomes

21I A y02%~+ -A T An (11 + ')
norm Y(O)B (0,0) = 2n r(v+h) e -- + A '

n-0 (2.17)

10
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The unnormalized form is, from (2.8),

v-1
2- My(o), , My(0O,) = 2 V r(v+)) (2.18)

with

H•v)(Ar') a e-A Ann a+ , )

n=0

1 for v - 0 , (2.18a)

{ 1 + r, for v - 1 , (2.18b)

I/A + (1+r')2 for v -2 . (2.18c)

For other values of v (>0), we must evaluate H•v) numerically.

II. THE MEAN VALUE, y; II 4 -

Now p - 0, n - 0, Ya = 0, and (2.7) reduces directly, upon

use of (2.18), to

1nor- My(€)B - My (0,)I) ( M-{eA -I A +

= r 2(+1) H("/ 2 )(A,r') 2

(2.19)

The unnormalized form of (2.19) is, from (2.8),

2 2" V-- 4,°~~2A F2[2 /)2
y =My(-)B My(0,A_ = r(s) H~v/ 2 (A,r') , (2.20)

and for v even, we find, from (2.18a,b,c)

(0) Hl 1  +r, H ( 2  + (1 + r" . (2.21)

11
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-• 2
III. THE CONTINUUM INTENSITY: y - y

From (2.18) and (2.20) we get at once the general result

for v 1 0,

2 - V frcv+½) 2~v v/[2)
PCE -y 2 A 7 1 H~v) H(v~ I (2.22)

c 2A 1
which is the generalization of [1; (13.7)], in the classical
purely Gaussian cases, to the present, dominant non-Gaussian
noise component 22A ( 2 2 In these classical cases, we can
show at once that

limr H(v) 2v lim e-A ZIAn (n_2 ( +c.)v_,2v (= v) , (2.23)
•240 1 2A 240 G n=0G

where 22A 4 C implies A 4 0 and B0 4 0, cf. (2.2b), so that

(2.22) becomes, as expected,

Wc(Gauss 2 v -2v4 (> 0) , 1 2 0 . (2.24)

Figure 13.5 of (1] shows (2.24) as a function of rectifier
law (v), as well as (2.18), (2.20) in these Gaussian cases. In
the present, more general, situation of Class A noise, the
results are more complex, as expected, with now two additional
parameters (A,r'), descriptive of this much broader class of
interference.

12
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2.2-3: CASE A, FIGURE 2.1

We turn now to the more general problem of the covariance of

the Class A non-Gaussian random field, sampled according to

procedure (A), shown schematically in figure 2.1 earlier. Here,

x - a(Rt), sensed at (R,,,t,),, (R 2,t2)" where L - L, cf. (3.3) in

[3; (3.2)]. Equation (2.7) applies here, with AR )1 0 (as well as

for AR - 0), and we use (2.9ab) for our illustrative examples,

which are discussed in section 3 following. At this point, we

recall from (2.3a) that the proper time delay to ure is

T' - r - AR/c a in p - P(T'), and in some of the structural

elements of the noise field covariances, cf. [3; (3.11bc)].

CASE I: f, - 0

From (2.7), we have p - 1, mi = M 2 1, giving

M
0% -A T An 6R

M (ARO) - e (B + rl)v B. P 1 (2.25)
y n-0 . n! A lawn C 0

where (2.7b) is specifically

n 
'A

Y k L( ARO) + r, kG(ARO) (2.25a)
awn n

X +

For calculations, (2.9ab) are used, with B V given by (2.7a),

where (2.25a) provides Y a When AR - 0, (2-25) reduces to (2.15)

et seq. for the total intensity of the field observed at R 1 w R 2*

13



TR &887

CASE II: AR 4 c, IT'I > 1

When AR . •, we obtain different results, depending on r'.

Here p - 0, Ya 4 0, cf. (2.9a,b) in (2.7b), and therefore n - 0.

Accordingly, (2.7) becomes

A 2
M y( ,Mr'j > 1) - -4 00,M) - M (0,-) - Ynorm , (2.19) . (2.26)

The fact that AR 4 • ensures that Ya 4 0, a behavior similar to

that for Case (B) above, when we consider the purely Gaussian

noise process, section 2.2-1.

CASE III: AR 4 -, 0 < Ir'l < 1

Here, p > 0 while Ya 4 0, so that B , (2.7b), becomes r2(V+½)

once more. The second moment function (2.7) is now

^ r2(• t [AI-p ml+m2
M(R,') - r!)exp[-A(2-p)] [A ! m2!

m1 2m2 =0 1! 2

x )- Apln (n+m1  v/2 (n+m2  v/2
x n! ---- + r + (2.27)

n-0

which is a minor simplification of (2.7).

CASE IV: AR 4 , It'I = 0

In this special situation, where r = AR/c 0 4 in such a way

that T' - 0 and therefore p = 1, Ya = 0, we obtain directly from

(2.27) the comparatively simple result,

M ( O,0) = r (124i) H~v) (> 0) (2.28)

14
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2.2-4: REMARKS

At first glance, as AR - o, we might expect My always toreduce to j•2 ,~. _ •2 0frte
o , e.got Ky My = 0 for the covariance of the

rectified space-time field. This is expectedly the case for the

covariance (and second-moment) function of the input Class A and

Gauss noise field components a(Rt), as we can see directly from
(2.9a,b), or from [3; (3.11b,c)] for example, in the ;"ysically
derived cases. However, the process or field y - g(x) here is
the result of a nonlinear operation, cf. (2.5), (2.6), which
severely distorts the input waveform and generates all kinds of
modulation products, associated with the spatial as well as the

temporal variations of the input field. This accounts for the
departures in Cases III, IV of M (o,f') from -2, while certainly

Mx( ,t,) 4 ,since x - 0 initially here).
From the various limiting results above, we see that

M y(0,0) > My (,0) and My (0,0) > My (0,) , (2.29a)

and

My(=,O) M y (0,0) depending on A, r', and v , (2.29b)

with

My (0,0) - M y(0,) > 0 , cf. (2.19) and (2,20) , (2.29c)

_2
My (,W) = y (0,m) - y , cf. (2.20) and (2.26) , (2.29d)

whereas
2

M x(0,0) > M x(0,M) - M x(,0) - x - 0 . (2.29e)

Finally, we note that (2.11), (2.12) apply here, also, for

the Gauss-alone cases, where now

2 2A( 1 + r') a u2 and B~ja0 4 (i + r')v Bva 0

15
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2.2-5: SPECTRA

The various intensity spectra associated with the output of

the processor (cf. figure 2.1) are important also, as they show
how the energy in this output is distributed. Here, we consider

two types of spectra, respectively, for the rectified spatial

field (A) and for the process (B), namely the wavenumber and the

frequency spectrum of y(R,O) and y(O,t). In particular,
wavenumber spectra are useful in the analysis of spatially

distributed phenomena, paralleling the analysis of time-dependent

phenomena.

I: WAVENUMBER SPECTRUM

The wavenumber intensity spectrum is defined here by

W2(k,0)y - W2 (kt)yjr=O a Jf My(ARO) exp(ik-AR) d(AR) (2.30a)

AR

- 2n J My (AR,O) J (kAR) AR d(AR) - W2(k,O) y (2.30b)

0

with

k - (k x,k) , AR = IARI , k - Jkj (2.30c)

for these isotropic fields, where k is an (angular) vector

wavenumber. Using the normalization of (2.8), we get, with
k kAL,

W 2(k,'

WO(kO) = 2A M (x,O) J (kx) x dx (2.31)
2( y A 2V2 2/4n y 0

for the normalized wavenumber intensity spectrum.

16
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A
Since My (,O) is nonvanishing, cf. (2.28), there is a dc

component, or &-function, in the general wavenumber spectrum.
We will use the relations

xJ 0 (Ix) dx- (k - 0), k k + k y ' k
0 (2.32)

A

where we must remember that k is two-dimensional. With v a
vector wavenumber defined by

AA
k - 2ni [- (O,*)] , k = 2nu - 2njiI , (2.33a)

and using the relation

6(ax - b) = 1 6 x - for a > 0 , (2.33b)

we also show that

6(k -0) 6(k -0) - -1A 6(k-0) - 1 6(,-0)

1(2'-)2 i (2.34)

(2u) Xy x y

Applying (2.32) - (2.34), with

A AAA

W2 (k,*l - 2 x Jo(kX) [My(XO) - My(ab,0)I dx
0

40A A
+ 2I My(OO) f x Jo(kx) dx (2.35a)

0
A 2 A A A

W2 (kO) y-cont + (2n) My(0,0) 6(k x-0) 6(k y-0)

A
W2(k,0) ycont + M (Co,0 6{i-0) 6(i -0) ( 2.35b)

17
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A A
which defines W2(kO)y-cont, the continuous portion of the

A

spectrum and shows the dc term in k- or '-space, as convenient.

It is W2_cont with which we are concerned in the specific

numerical examples of section 3 ff.

II. FREQUENCY SPECTRUM

Here we employ the Wiener-Khintchine theorem [1; 13.42)] to
write for the frequency spectrum of y

Wy(f) = 2 M My(0,T) exp(-iwr) di = Bo My (0,) cos(G•f) df,(2.36)
-• 0

where

A

B 0 2 2A V 2 /HA; f -A; u - 2nf; W * •/•; . f = f/A. (2.36a)

Accordingly, we define the normalized frequency intensity

spectrum of y as

A A fA
W y(f) Wy (f)/B 0 i = y(0j) cos(cif) df ( (2.37)

0

A -2
Again, there is a dc component, since My (0,-) =- y P> 0),

cf. (2.20). We have

Op

A Ar AA A A
W (f) f [^ _

y - y0,-My( cos(6f) df + M My{(0,) 6(f-0), (2.38)
0

since

o1cos(wx) dx -u 6(w-0) 6(f-.0)

0

18
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As in the wavenumber cases above (Case I), we are concerned with

the continuous part of the spectrum, viz.

A0 A 2
Wy(f)cont = [My (0, -0 cos(wf) df (2.39)

0

which is also illustrated numerically in section 3 ff.

III. WAVENUMBER FREQUENCY SPECTRUM

The wavenumber frequency spectrum is defined by

40

W2 (k,))y = ff My(AR,T) exp(ik-AR-iWr) d(AR) dr , (2.40)

-CO

with w - 2nf. The associated wavenumber spectrum W2 (k,0) used in

(2.30) is obtained from W2 (kr)ITo. In normaliz, rorm, we have

for (2.40), in these isotropic cases,

W2)(k,FW)y [2• 22A a/(4np) W2C~i
- 2  2A 2 ) w2 k,w y

0A

- Jj My(ARf) exp(ik-AR-iCf) d(AR) d;

A AI

W2 ( k,)y = 2n JJ My(X,f) Ja(kx) exp(-iaf) x dx df . (2.41)

00

The various dc components are readily extracted, as in Cases I

and II above. Numerical examples of this joint intensity

spectrum are reserved to a possible subsequent study. The

results of section 3 show the marginal spectra (Cases I, II) of

this more general situation.
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2.2-6: FREQUENCY AND PHASE MODULATION
BY CLASS A AND GAUSSIAN NOISE

This is a Case (B) situation, cf. figure 2.1, where AR - 0

and we are concerned only with the received (non-Gaussian) noise

process which is used to angle-modulate a (high frequency)

carrier fo0  For the analysis, see [3; section II].

The general result for the covariance of the carrier

modulated by Class A and Gauss noise is found to be

Ky(t)A+G 1 2 Re[ exp iw - D 2 A(2-p)

+ 2A(I-p) exp[-D2 o/AI)I , (2.42)

where now, cf. [1; (4.2),(14.14c)],

It I
2T I .( 2 1 rT
)G a G or ý2A f (ftI-X) k(X) dX (Do - DF)
AFM 0

- 1 or W)MJ1W(G or W - df .(2.42a)

0

Also, cf. [1; (14.2), (14.14c)],

2(T 2 or P-2A) jk(0) - k(T)I(G or L) (Do D) (2.42b)

and

w2 0F 4201 f WA(f) df/w or 2PM 2 2A (2.42c)

0
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For our numerical examples, we use the RC-spectrum of

[1; section 14.1-3], where now

kL(ý) - exp(-bJ4I) k G(4) - exp(-Ij) , - T AN, (2.43)

and therefore

FM: D2 2(T)A =2-'. [ [exp(-bj~I) + bI~j - 1]

DF 2 (r r (P A [exp(-[IC) + Il - 1]

P 2  D 2A /A 2 (2.44a)

2) 22rA F '

PM: Dp 2(t j(P2 [1 - exp(-blkl)]

D4 P2(T)G - r(I14)A (1 - exp(-bI~I)]

(I D2 - 2D 2 (2.44b)PIA P Dp 2A I'

with b (> 0) a dimensionless quantity, as is Z. The quantity

A•N is the bandwidth of the modulating (Gauss) noise, cf.

(2.43). Note, also, that

2 (2 D)2 2 - GD 2 . ( 4) (2.45)r' j PF A G DF/AWN F) G ;) G" P A)

2The quantities (pFp)() are the respective modulation indexes for

FM and PM, cf. (1; chapter 141.

Finally, we have for p in (2.3), now with AR = 0,

Ji - for i1AW N AW N

0 for Li >

A2N
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Putting the above (2.43), (2.44) in (2.42), we now specialize

our results,

1A2Ky()A+G - PO ko(r) coS(WoT) , with ko(0) - , (2.47)

to the normalized covariance ko(T), respectively, for FM and PM,
and their associated spectra. We have for these carriers
modulated by a sum of Gaussian and Class A noise:

I. FREQUENCY MODULATION

ko(C)FM - exp[-r'(1F)A [exp(-ICI) + I - 1] - A(2-p)

+ Ap exp(_ -1 P2)n (exp(-bI~j) + bijl - 1 , (2.48)

with P(T) given by (2.46). Here, 2oIFM 4 in (2.42). Since

lim ko(t)FM - 0

there is no dc in k _FM, and hence all the original carrier power
2(-A 0 /2) is distributed into the sideband continuum for this

highly nonlinear modulation, as expected [1; section 14.1-2].
The associated intensity spectrum for koIFM is defined by

r 0
W( W)A+GFM = J ko(l)FM cos(aZ) dC , --- (2.49)

0

which is determined by a direct cosine transform of k o(C)FM. See
appendix A.6 ff.
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II. PHASE MODULATION

k ( ý)PM -exp1-' ) [1 - exp(-lýI)] +2A(1-p) exp(_ _1(.2l

- A(2-p) + Ap exp( _I(IJ) [1 - exp(-bVIj)])

(2.50)

with p(C) again given by (2.46). We note that

ko(O)PM - 1 , (2.51a)

as before; that is, the total (normalized) intensity is unity.

Also

ko(a*)PM - exp[-'(2) - 2A(1 - exp( ~(_ )A)I (2-51b)

this is the fraction of the power remaining in the carrier, so

that

ko (0pM - ko(w)pM - 1 - (2.51b) , (2.51c)

which is the fraction of the power distributed in the sideband

continuum.
The associated intensity spectrum of the sideband continuum

is determined from

wW(6 )A+GIPM-cont f [ k 0 (1PM - ko(**)PM1I cos(ai) dý (2.52)
0

See section 3 ff. for examples and appendix A.5 for the

evaluation methods.

23



TR 8887

Finally, in the equivalent Gaussian cases (Gauss noise
modulation of equal intensity and basic spectrum, e.g.,

r' v )A 4 r', A - r' PFA (1 + v' and kG • kL,

we see that (2.48), (2.50) reduce to

- ex[-[+ 2  r' [exp(-bICI) + bj•[ 1]/b2
0(') FM-Gauss ~LF)A r fj-.J 1

/

( F)A - (1 + v')(,1A ;(2.53a)

ko)pa w expI1_(^2) r, (1 -exp(-bICIflJ

(p2A (1 + v')(14)A (2.53b)

with spectra obtained as before, from (2.49) and (2.52).
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3. NUMERICAL ILLUSTRATIONS AND DISCUSSION

It is convenient to discuss the general results, namely the
effects of (ZMNL) nonlinear rectifiers on, and modulation by, a
mixture of Gaussian and non-Gaussian noise processes and fields,

from the specific numerical calculations presented here in

figures 3.1 - 3.10. These constitute a representative selection
from the universe of possible parameter states (cf. "Summary of
Normalized Parameters" and section 2, preceding]. This is done
here on a per-figure basis, as noted below. In each case, the
dc component is removed: only the covariance or continuous
spectrum is calculated. We recall that there are two cases to

distinguish: Case A, t'=tr-R/co, a 2-element array; and Case B,
T'--t 2-tl, a preformed beam. See figure 2.1 and (2.3a).

All spectra shown here are normalized to have area (under the

spectrum level) of unity, i.e., the spectral normalization is

obtained by dividing the spectrum by the value of the associated
covariance at its origin. The normalization of the covariances
themselves is obtained by dividing by the value at f-0 or AR=0.

I. GAUSS NOISE ALONE

FIGURE 3.1
This figure shows the normalized temporal covariance (AR-0)

for both the input and output of a ZMNL half-wave v-th law (vŽ0)

detector, when v - 0,1,2 and when only Gaussian noise (A=0) is
applied to these nonlinear devices. These curves are based on

(2.11) with (2.7a), where Ya = kG' (2.96), with ACG a AwG/A - 5
here. The normalization is with respect to the covariance

maximum; e.g., the normalized covariance shown in figure 3.1 is

obtained from [(2.11)/(2.11)f=0], AR-0. These results apply for
both cases A,B of figure 2.1, where now f'-f, since AR=0, cf.

(2.3a) and remarks.
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As expected (cf. [1; chapter 13]), the general nonlinearity
(2.6), v10, contracts the covariance, which is equivalent to

spreading the spectrum vis-A-vis the input , cf. figure 3.2,

below. Moreover, the greater the distortion (v-0,2), usually the
greater are these effects. [See appendix A.1.]

FIGURE 3.2
This is the same situation as shown in figure 3.1, except

that the normalized intensity (frequency) spectrum is calculated
A

now [cf. section 2.2-5, Case II, (2.39)] with My (0•), (2.11),

used in (2.39). Observe the greatly broadened spectra,

particularly at the low spectral levels, where the greater spread
occurs for the "super-clipper", v-0, cf. remarks, figure 3.1;

also, appendix A.3.

FIGURE 3.3
For the same purely Gaussian field above, cf. (2.11) and

(2.96), with f,f'-0, the spatial covariance is calculated, with

parameters AL/AG - 5h, using (2.11) as before. The normalization
is with respect to the covariance at AR-0. Again, one observes

the same kind of contraction in the covariance as noted in figure
3.1. [See appendix A.2.]

FIGURE 3.4
This is the wavenumber analogue of the frequency spectrum of

figure 3.2, now with f',f-O, and is obtained from (2.35a,b) with
aL /A G ' 5. The rectification operation similarly spreads the

wavenumber spectrum, with the greatest distortion (v-0) yielding

the greatest wavenumber spread, as expected from the

corresponding contraction of the associated covariance, cf.
figure 3.3 above. [See appendix A.4.]
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CLASS A PLUS GAUSS NOISE

FIGURE 3.5

The temporal covariance here is given by the general result

(2.7), with the associated relations (2.7), (2.8), (2.9), wherein
AR-0, so that f-f'-t 2 -tl, as before, and where Bvla, (2.7a), is
now given analytically by (2.10) for v - 0,1,2. Here, the

parameter values are A)G a AwG/A - 5h, as before, now with A-0.2,
r,-0- 3, tAwL/A E A&L - 1 for the Class A non-Gaussian noise

component, typically.
Again, for the super-clipper (v-0), the contraction in the

normalized covariance is greatest, cf. figure 3.1. But the

contribution of the comparatively strong non-Gaussian component
exaggerates this effect. [See appendix A.1.]

FIGURE 3.6
The corresponding intensity (frequency) spectrum (AR=0),

obtained from (2.7) in (2.39), however, shows a fine-structure

not exhibited when Gauss noise alone (A-0) is applied to these

ZMNL devices. The spectral levels for the case v-0, (A=0) and
(A>0), cf. figure 3.2 with figure 3.6, are approximately the

same, whereas the other inputs, cases v-1,2, are much elevated as

f becomes larger, again due to the presence of the structured

Class A noise, when PTs 1 1, cf. (2.3): on the average, the

original Class A "signals" are of comparatively short duration,

or spectrally wide to begin with, so that clipping further
spreads the spectrum. [See appendix A.3.]

FIGURE 3.7
The spatial covariance when Class A noise is added to the

Gaussian input shows analogous behavior, cf. figures 3.3 and 3.5:

the covariance is compressed vis-A-vis the input, but more so

than in the Gauss-alone situations. Again, (2.7) - (2.10) are

employed. [See appendix A.2.]
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FIGURE 3.8

The corresponding wavenumber (intensity) spectrum with Class
A noise and the Gaussian component, obtained from (2.7) - (2.10)

in (2.39), is shown here. Comparison with figure 3.4 indicates a

broader spectral input, due to the non-Gaussian component, but a
relatively narrower output, although the latter is still
noticeably spread vis-A-vis the original input. [See appendix

A.4.]

FIGURE 3.9
Finally, we consider the angle-modulation cases described in

section 2.2-6 above, where weak to strong angle modulations
(p - 1 to 50) by Class A noise, with a weak (r'=10- 3) Gaussian

modulation component, is employed.
For phase modulation by non-Gaussian noise, based on (2.50)

with (2.44b), (2.45), (2.46), the resulting normalized intensity
(frequency) spectra are obtained by applying (2.50) to (2.52),
where f - 6/2x; 6 - (w-wo0 )/AwN, cf. (2.49). Note the "spike" at

f - 0.1, followed by a variety of sidelobes which rise as the
phase modulation index pp increases. The spike is now bounded at
f a 0.8, at the -10 dB level, when pp - 50. As expected, the
larger indexes (pp) produce broader spectra. (See appendix A.5.]

FIGURE 3.10
For frequency modulation by non-Gaussian noise, from (2.48)

with (2.49) and (2.44a), the corresponding intensity (frequency)

spectra again exhibit a continuous spike (f < 0.1). With small
modulation indexes (p.), the spectra are less broad than for the
larger indexes, as expected. The non-Gaussian noise component

dominates the spectrum here. [See appendix A.6.]
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EXTENSIONS

Other situations where the second-order Class A probability

density functions may be applied are noted in [2] and (3]. We
list some of the extensions of the analysis to the following

"classical" problems:
1) The inclusion of representative signals, with Gauss and

non-Gauss (Class A) noise, in the problems already treated
here (section 2);

2) The case of the full-wave square-law rectifier, with both
Class A and B noise, as well as Gauss noise;

3) The extension of 2) to include general broadband and
narrowband signals;

4) The calculation of signal-to-noise ratios and deflection

criteria, cf. [1; section 5.3-4].
5) Covariances and spectra for ZMNL system outputs, with

signals as well as non-Gaussian noise inputs;

6) The r8le of the electromagnetic (or acoustic) interference
(EMI or AcI) scenario, cf. [5; section 2B,5];

7) Evaluation of the large (FM,PM) indexes, or asymptotically

Gaussian cases, cf. [12].

Further opportunities to extend the classical theory [2],[3],

now with non-Gaussian ncise inputs, are evident from the examples

and methods described in [1; chapters 5, 12 - 16], for instance.
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FIGURE 3.1 TEMPORAL COVARIANCE (FOR AR=0); GAUSS NOISE ONLY;

CF. (2.11) WITH (2.7a), (2.9b), AND APPENDIX A.1
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FOR INDEX PF=l, 2 ,5, CLASS A AND GAUSS NOISE;

CF. (2.48) WITH (2.49), (2.44a), AND APPENDIX A.6
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PART II. MATHEMATICAL AND COMPUTATIONAL PROCEDURES

4. SOME PROPERTIES OF THE COVARIANCE FUNCTION

In this section, we collect some useful relations for the
covariance and auxiliary functions encountered in the numerical
evaluation. These are necessary for rapid computation of the
multiple series involved here and also serve as checks on the

numerical procedures employed.

4.1 SIMPLIFICATION AND EVALUATION OF B (Y)

The function B (Y) is defined by the following combination of
hypergeometric functions:

B (Y - r2(v+ 1) F( v v 1; Y2)+
BVY 2l7 - F 1- - 7

+ 2 r 2(j + 1) y F 'l-, 1 v., 1. y2) for Y 1 .(4.1)

For the upper F function in (4.1), we have [1; (A.1.39b)]

v 0, F O, 0; 1; ¥ 2) - 1;

V - 1, F(-½, - ½; Y; 2) - Y arcsin(Y) + (1 - Y2)

v- 2, F(-1, -1½; 2) - 1 + 2y 2 ; (4.2)

where arcsin is the principal value inverse sine function. On

the other hand, for the latter F function in (4.1), we have
(1; (A.1.39a) and (A.1.39c)]
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v = 0, F(.1 1. 2 y2) arcsin(Y)

V = 1, F(0, 0; 4; Y2 ) = 1

"2 - 2' - Y 2 + - + 2Y arcsin(Y). (4.3)

When these quantities are substituted in the above expression

for B (Y), we find the following relatively simple relations:

B0 (Y) = n + 2 arcsin(Y)

B1 (Y) - Y arcsin(Y) + (1 - y2) + y

B2 (Y) (I + y2 )(1 + arcsin(Y)) + - Y2)h (44)2( )= ) + (4.4)

These three quantities can be computed simultaneously by the

following very compact computer coding in BASIC:

Y2-Y*Y
Sq=SQR(I.-Y2)
T=ASN(Y)+1.5707963267948966
BO=T+T
Bl=Y*T+Sq
B2=(.5+Y2)*T+1.5*Y*Sq (4.5)

Thus, the rather formidable expression, above, for B (Y) can be

evaluated by the use of just one square root and one arcsin when

v = 0, 1, 2.

The following limiting values, which are obvious, are needed

for various special cases:
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B0 (0) = n,. B0 (1) - 2n

BI(O) = 1 , B1 (1) = Rt

B2 (0) = n/4 , B2 (1) = 3n/2

8 3 (0) = 1 , B3 (1) = 15n/4

B4 (0) = 9n/16 , B4 (1) = 105n/8 . (4.6)

These are special cases of

B (0) = r22(v + 1) (4.7)

B (1) = 2 nh r(v + 1 (4.8)

the latter following from [10; (15.1.20)].

4.2 LIMITING VALUES OF THE COVARIANCE FUNCTION

The covariance function at normalized separation AR and

delay f is given by (2.7) as

D OD m +m2

M (AR,J) - exp[-A(2-p)] 5Im m2!
m1 =0 m2 ='0

n v/2 v/2

x A + + r, B (Y) (4.9)n! A +FA + A V

n=0

where

p - p(f) - maxf0, 1 - IJll (4.10)

Sk + r, k
Y - Y(m 1 'm 2 n) X n A AL n G (4.11)

+ r' +r
A A A A
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-2 1 W~j2 f~

kL = kL(•R,f) = exp - •2 A 2 , (4.12)

kG = kG(RI,) = exp A- G 2 [ f21 (4.13)

The functions p, kL, kG can be replaced by other functional
dependencies, if desired. The function B• (Y) has been
considered earlier and considerably simplified for v = 0, 1, 2.

4.3 VALUE AT INFINITY

As AR or f - ±w, then

p 4 0, kL 4 0, k G 4 0, Y 4 0 . (4.14)

(If IjfI remains less than 1 as SIR tends to infinity, then p does
not approach zero; this nuance has been discussed elsewhere in
this report.) Then, it follows that

O O m 1+m 2v/2 v/2
M exp(-2A) m ! m! A J 2 + r B (0)
y ~ 1  1  

1  2 tAA AAJ
m1 =0 m2 =0

=B (0) exp(-A) M r v r 2 (4.15)

m=0

because the sum on n can be terminated with the n = 0 term.
The sum on m can be effected in closed form, for v = 0, 2, 4,

etc., by using the following results:

Z = exp(A) , (4.16)M!
m=O
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m=O m1l

t m 2 Am (m-1+I

•.n!m = (rn--i) (rn-.+1
m=O m=i

Am

Am + = + A) exp(A) . (4.18)

Am - m2). (m Am I).' m

m=2 m=l

There follows

R for v - 0

A n(,12
M y 41 + rý for v = 2. (4.19)

9n [! + 1 + ri 2]2  for v - 4

The case for v = 1 requires a numerical summation, once A and

rA are specified. When these limiting values are subtracted from

the correlation function, we obtain the covariance function.
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4.4 VALUE AT THE ORIGIN

For AR = 0, f = 0, then

p = 1, kL = 1, kG 1 (4.20)

and

An (A + r) v
My(0,0) - exp(-A) n! +A B (1) , (4.21)

n=0

because the sums on mi and m2 can be terminated with the zero
terms, thereby also leading to Y = 1.

The sum on n can be accomplished in closed form, for
v- 0, 1, 2, etc., by using results given earlier. There follows

'2n for v =O0

A

My(0,0) 1 + r for v - . (4.22)

+ (1+r ,)2 ] for v -2
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PART III. APPENDICES AND PROGRAMS

APPENDIX A.1 - EVALUATION OF COVARIANCE FUNCTION

FOR ZERO SEPARATION (AR - 0)

A program for the numerical evaluation of covariance

My(AR,f) for AR - 0 is contained in this appendix. Inputs
required of the user are A, r', (A /0) (G/)2 , (f), N(f),

in lines 20 - 70. Since we are generally interested in values of
A less than 1, the series for Ay in (4.9) will not have to be

taken to very large values of mi, m2 , n; accordingly, the values

of JA /k!| are tabulated once in lines 260 - 300 with a tolerance
of 1E-10 set in line 80.

The values of the covariance at infinity, as given by (4.19),

are computed and subtracted in lines 220 - 240 and 400 - 420;

this is in anticipation of taking a Fourier transform of a

covariance function which decays to zero for large arguments AR.
A ^

The functions BV(Y) and My (R,f) are available in the two
subroutines starting at lines 1010 and 1120, respectively. The

latter subroutine actually calculates the covariance at general

nonzero values of both AR and f, although we only employ it for
AR- 0 in this appendix; see lines 10 and 380. Also, for AR - 0,

the parameter Lg2 - (AL/AG)2 is not relevant and, hence, is

entered as zero in line 380.
The exponential Gaussian forms for k and k are used inL d Garusdi

lines 1200 and 1210, while the triangular form for p is entered
in line 1240. Any ot these can be replaced, if desired, by forms
more appropriate to the user.

The program is written in BASIC for the Hewlett Packard 9000

Computer Model 520. The designation DOUBLE denotes integer
variables, not double precision. The output from the program is

stored in data files AOTO, AOT1, AOT2, for v - 0, 1, 2,

respectively.
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1o Rc =O. 1 DeIR-
20 Az.2 1 A(subA)
30 Gp=.001 IGAMMA'(subA)
40 Wlb2I1. I(De1W(subL)/Beta)^2
50 Wgb2=25. I(DelW(subG)'Betla)2
go Dtc=.81 INCREMENT IN Tau-~
70 Ntc=200 NUMBER OF Tau^' VALUES
8e Tolerance=1.E-10
90 CON Af~(0:40),C(O:8O),Sq<O8O8)

100 CON DOUBLE J I INTEGER
110 DIN Kag(200) ,Tc (0,200) ,0(0:200) ,F (0: 200) ,F2(0:200)
120 DOUBLE Ntc,K IINTEGERS
130 FOR K=8 TO Ntc
140 Tc=K*Dtc ITau-
150 Rho=MAX(0.,l.-ABS(Tc)) Rho
160 T2-.5*Tc*Tc
170 K1=EXP(-Wlb2*T2)
180 Kg=EXP(-Wgb2*T2)
190 Kag(K)=<Rho*KI+Gp*Kg/I.+Gp) !INPUT COVARIANICE
200 NEXT K
218 81=1./R A>0 REQUIRED
220 P~inf=PI
230 P1inf=FNFlinf(A,Gp)
240 F2inf=.25*PI*(1.+Gp)*(1.+Gp)
250 Af~(0)=1.
268 FOR K=1 TO 40
270 J=K
288 Af<K)=T=AC(K-1)*RK A-K/K!
290 IF T<Tolerance THEN 328
380 NEXT K
310 PRINT "40 TERMS IN Af<*)"
320 P~k K=O TO J*2
330 C(K)=TK*A1+Gp
340 Sq(K)-l./SQRC')
358 NEXT K
368 FOR K=O TO Ntc
378 Tc(K)=Tc=K*Dtc 1 Tau-~
388 CALL M5'c(Rc,Tc,A,Gp,Wlb2,Wgb2,8. ,FO(K),F1(K),F2(K'))
398 NEXT K
488 MAT FO=FO-(POinf)
410 MAT PF1=F-(Flinf)
420 MAT F2PF2-(F2inf)
438 MAT P8=FO/(P8(O))
448 MAT FI=PI'(PI(8))
450 MAT F2inP2/'F2(O))
468 PRINT "INFINITY:";F~inf~;Flinf;F2inf~
470 PRINT "MINIMAs ";MIN(FO(*))IMIN(Fl(*));MIN(P2(*) )
480 PRINT "AT Ntc: ";F8(Ntc);FI(Ntc);F2(Ntc)
498 CREATE DATA "AITI",g8
508 ASSIGN #1 TO "AITI"
510 PRINT #I;Kag(*)
528 CREATE DATA "AOTO1",8
530 ASSIGN #1 TO "ROTO"
540 PRINT #LIFO(*)
550 CREATE DATA "AOTI1",8
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56e ASSIGN #1 TO "ROTI"
570 PRINT #1;Fi(*)
580 CREATE DATA "ROT2",8
590 ASSIGN #1 TO "AOT2"
600 PRINT #I;F2(*)
618 ASSIGN #1 TO *
628 Tcmax=Dtc*Ntc
638 GINIT 200/260
640 PLOTTER IS 505,"HPGL"
650 PRINTER IS 585
668 LIMIT PLOTTER 585,8,200,8,260
670 VIEWPORT 22,85,19,122
680 WINDOW8.,1.,8.,I.
690 PRINT "VS5"
700 GRID .25,.25
710 PRINT "VS36"
720 PLOT Tc(*),Kag(*)
730 PENUP
748 PLOT Tc(*),FO(*)
750 PENUP
760 PLOT Tc(*),FI(*)
778 PENUP
780 PLOT Tc(*),F2(*)
798 PENUP
888 PAUSE
810 PRINTER IS CRT
820 PLOTTER 505 IS TERMINATED
830 END
848
850 DEF FNFIinf(AGp) f for v(=nu) = I
860 Tol=l.E-18
870 Rg=A*Gp
888 T=1.
890 S=SQR(I.+Rg)
980 FOR M=2 TO 188
918 T=T*R/M
920 P=T*SQR(<+Ag)
930 S=S+P
948 IF P<S*Tol THEN 970
958 NEXT M
960 PRINT "100 TERMS IN FNFlinf"
970 T=Gp+R*S*S+2.*SQR(Ag)*S
980 RETURN EXP(-2.*A)*T
998 FNEND

10878
1010 SUB Bnu(Y,B0,Bl,B2) Bv(Y) for v=0,1I,2
1020 IF Y>I. THEN PRINT %4Y = I+;-1
1030 IF Y>l. THEN Y=I.
1040 Y2=Y*Y
1050 Sq=SQR(1.-Y2)
1060 T=RSN(Y)+I.5707963267948966
1070 BO=T+T

1080 BI=Y*T+Sq
109a B2=(.5+Y2)*T+1.5*Y*Sq
1100 SUBEND
1110
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1120 SUB Myc (Rc, Tc ,A,Gp, Wib2, Wgb2, Lg2, SO, SI, 2)
1130 COl Af'(*),C(*),Sq<*)
1140 COMl DOUJBLE J 1 INTEGER
1150 ALLOCATE Rp(O:J),ApI(O:J)
1160 DOUBLE KM1,Il2,N,K1,K2 IINTEGERS
1170 A1=1./R R>O REQUIRED
11s0 T2=.5*Tc*Tc
1190 R2=Rc*Rc
1200 KI=EXP(-R2--Wlb2*T2)
1210 Kg=EXP(-Lg2*R2-Wgb2*T2)
1220 Ak=RI*K1
1230 Gk=Gp*Kg
1248 Rho=MAX(0.,1.-ABS(Tc)) 1 Rho
1250 Rhol~l.-Rho
1260 Rp(0)=Apl(0)=Pk=Pkl=1.
1270 FOR K=1 TO J
1280 Pk=Pk*Rho
1298 Pkt=Pkl*Rhol
1300 T=Rf(K)
1310 AP(K)=T*Pk
1320 APl(K)=T*Pkl
1338 NEXT K
1348 SOnl-Slml=S2ml=0.
1350 rOR MI=O TO J
1360 SOn2=Slm2=S2m2=0.
1378 FOR M12=8 TO J
1380 SOn=Sln=S2n=S.
1390 FOR N'=O TO J
14018 K1=N+1'
1410 K2=N+t12
1420 T=Ap(N)
1438 P=C(K1)*C(K2)
1440 Y(HN*Ak+Gk)*Sq(Kl)*Sq(K2)
1450 CALL Bnu(Y,BO,B1.,B2)
1468 SOn=SOn+T*BO
1478 Sln=Sln+T*SQR(P)*B1
1480 S2n=S2n+T*P*B2
1490 NEXT N
1508 T2=Rp1(I2)
1518 S~m2=SOm2+T2*SOn
1520 Slrn2=Slrn2+T2*Sln
1530 S2m2=S2m2+T2*S2n
1540 NEXT M12
1550 T1ARp1(tl)
1560 SOml=S~rl+T1*S~m2
1570 Slml=Slrl+TI*Slm2
1580 S2m1=S2m1+T1*S2m2
1598 NEXT MI
1600 T=EXP(-A*(2.-Rho))
1618 SO.T*SOral
1620 SI=T*S1,nl
1630 S2=T*S2rnl
1640 SUBEtID
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APPENDIX A.2 - EVALUATION OF COVARIANCE FUNCTION

FOR ZERO DELAY (ff' - 0)

A program for the numerical evaluation of covariance
1M (AR,f) for f,f' - 0 is contained in this appendix. Inputs
y 2required of the user are A, rA, (A /AG) , 6(AR), N(AR), in lines

20 - 60. The tolerance for terminating the triple infinite sums
is set at 1E-15 in line 70. The output from the program is
stored in data files AORO, AOR1, AOR2, for v - 0, 1, 2,
respectively. Other relevant comments are made in appendix A.1.

The limit of M at AR = (when f - 0) is given by the closed
form results

Jr for v = 0'

0y0,) W 1 + rA for v - 1 (A.2-1)

1%
R . + (l + r,)2 for v = 2

4 A A

These values have been subtracted from My so that we can Bessel
y

transform a function which tends to zero as AR 4 -.

18 Tc=8. 1 Tau-
28 A-.2 ! A(subA)
30 Gp=.081 I GAMMA'(subA)
40 Lg2=5. I (DelL/DelG)^2
50 Drc=.005 1 INCREMENT IN DelR^A
60 Nrc=900 1 NUMBER OF DelR^ VALUES
70 Tolerance=l.E-15
80 COM R•(0:40),C(0:80),Sq(0:80)
90 tOM DOUBLE J 1 INTEGER

100 DIM Rc(0:988),Kag(0:900),F8(8:980),F1(8:900),F2(O:900>
110 DOUBLE Nrc,K ! INTEGERS
120 R1=1./A I A>O REQUIRED
130 Fginf=Pl ! LIMITS FOR
140 Flinf=l.+Gp 1 Rc=infinitV
150 F2rnf=.25*PI*((1.+Gp)*(1.+Gp)+R1) I AND Tc=O
160 Af(e)=l.
170 FOR K=1 TO 40
180 J=K
190 Af(K)=T=Af<K-1)*A/K ARK/K!
200 IF T<Tolerance THEN 238
210 NEXT K
220 PRINT t140 TERMS IN Rf(*)"
230 FOR K=8 TO J*2
240 C<K)=T=K*AI+Gp
250 Sq(K)=1./S0R(T)
260 NEXT K
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270 FOR K=O TO Nrc
280 Rc(K)=Rc=KDrc 1 DelR'
290 R2=Rc*Rc
300 KI=EXP(-R2)
310 Kg=EXP(-Lg2*R2)
320 Rho=MAX(0.,1.-RBS(Tc)) 1 Rho
330 Kag(K)=(Rho*K1+Gp*Kg)/(1.+Gp) INPUT COVARIANCE
340 CALL Myc(Rc,Tc.,A,Gp,0. ,0.,Lg2,FO(K),Fl(K),F2(~))
350 NEXT K
360 MAT F0OF8-(F~inf)
370 MAT FI=F1-(Flinf')
380 MAT F2=F2-(F2inf)
390 MAT FO=FO/(P0(0))
400 MAT F1=F1'(Fl(c0)
410 MAT F2=F2/'F2(g)>
420 PRINT "INFINITY: ";F~inf;FI inf;F2inf
430 PRINT "MINIMA: ";t1IN(F0(*));MIN(F1(*));MIH4(F2(.*',)
440 PRINT "AT Nrci ";F0(Nrc);FI(Hrc);F2(Nrc)
458 CREATE DATA "AIRI',33
460 ASSIGN #1 TO "AIR1I"
470 PRINT #1;Kag(*)
480 CREATE DATA "AORO",33
490 ASSIGN #1 TO 'AORO"
5180 PRINT #1;FO(*)
510 CREATE DATA "AOR1",33
520 ASSIGN #1 TO "AORI"
530 PRINT #1;F1(*)
540 CREATE DATA "AOR2"
550 ASSIGN #1 TO "AOR2
560 PRINT #1;F2(*)
570 ASSIGN #1 TO
580 Rcmax=Drc*Nrc
590 GINIT 2001260
680 PLOTTER IS 585,-"NPGL"
618 PRINTER IS 505
620 LIMIT PLOTTER 505,0,200,0,260
630 VIEWPORT 22,85, 19, 122
640 WINDOW4 O.,3.10.,i.
650 PRINT "V55"
660 GRID .5,.25
670 PRINT "VS36"
680 PLOT Rc(*),Kag(*)
690 PENUP
780 PLOT Rc(*),FO(*)
710 PENUP
720 PLOT Rc(*),F1(*)
730 PENUP
740 PLOT Rc(*),F2(*)
75e PENUP
760 PAUSE
770 PRINTER IS CRT
780 PLOTTER 505 IS TERMINATED
798 END
800 1
810 SUB flnu<Y,B0,B1,B2) 1 Bv(Y) for v=0,1,2
828 1 SEE APPENDIX A.1
980 SUBEIAD
910
920 SUB Myc(Rc,Tc,A,Gp,Wlb2,Wgb2,Lg2,SO,S1,S2)
930 1 SEE APPENDIX A.1

1440 SUBEND
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APPENDIX A.3 - EVALUATION OF TEMPORAL INTENSITY

SPECTRUM FOR ZERO SEPARATION (AtR - 0)

A program for the numerical evaluation of the Fourier

transform of covariance My (0,f) - Ay (-) is contained in this

appendix. Inputs required of the user are listed in lines

10 - 30. The data input, AOTO or AOT1 or AOT2, as generated by

means of the program in appendix A.1, is injected by means of

lines 410, 600, and 790.

In order to keep the FFT (fast Fourier transform) size, N in

lines 30 and 320, at reasonable values, the data sequence is
collapsed, without any loss of accuracy, according to the method

given in [8; pages 7 - 8] and [9; pages 13 - 16]. The

integration rule documented here is the trapezoidal rule; this

procedure is very accurate and efficient and is recommended for
numerical Fourier transforms.

10 Ntc=200 ! NUMBER OF Tau- VALUES
20 Dtc=.81 I INCREMENT IN TauA
30 N=1024 1 SIZE OF FFT; N > Ntc REQUIRED
40 DOUBLE Ntc,N,N4,N2,Hs I INTEGERS
50 N4=N/4
60 H2=N/2
70 REDIM Cos(0:N4),X(0:N-1),Y(0:N-1)
80 DIM Cos(256),X(1023),Y(1023),A(200)
90 T=2.*PI/H

100 FOR NH=0 TO N4
110 Cos(Ns)=COS(T*Ns) ! QUARTER-COSINE TABLE IN Cos(*)
120 NEXT Hs
138 GINIT 200/260
140 PLOTTER IS 505,"HPGL"
150 PRINTER IS 505
160 LIMIT PLOTTER 505,0,200,0,260
170 VIEWPORT 22,85,190122
180 WINDOW 0,N2,-5,1
190 PRINT "VS5"
200 GRID N110,1
216 PRINT "VS36"
226 ASSIGN #1 TO "AITI"
230 READ #1;R(*)
240 MAT X=(O.)
250 MAT Y=(O.)
260 X(0)=.5*A(0)
270 FOR ts=1 TO Ntc-1
280 X(Ns)=A(Ns)
290 NEXT Hi
360 X(Ntc)=.5*A(Ntc)
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310 MAT X=X*<Dtc*4.)
320 CALL Ff~t 4(N, Cos(* , X(*) ,Y(
330 FOR Ns=0 TO N2
348 Ar=X(Ns)
350 IF Ar>O. THEN 380
360 PENUP
370 GOTO 398
388 PLOT NsLCT(Ar')
390 NEXT Ns
408 PENUP
418 ASSIGN #1 TO "AOTOU
420 READ #1;A(*)
440 MAT X=(O.)
430 MAT X=(0.)
458 X(0)=.5*A(0)
460 FOR Nsl1 TO Ntc-1
470 X(Ns)=A(Hs>
488D NEXT Ns
498 X(Ntc)=.5*8(Ntc)
588 MAT X=X*(Dtc*4.)
510 CALL Fft 14(N,Cos(*) ,X(*),'Y(*>)
520 FOR Ns=8 TO N12
530 Rr=X(Hs)
540 IF Ar>0. THEN 570
558 PENUP
560 GOTO 580
570 PLOT Ns,LGT(Ar)
588 NEXT Ns
590 PENUP
680 ASSIGN #1 TO 'AOT1"
618 READ #1;A(*)
620 MAT X=(8.)
630 MAT Y=(O.>
640 X(O)=.5*A(o)
658 FOR Ns=1 TO Ntc-1
660 X(Ns)-A(Ns)
678 NEXT Ns
688 X(Htc)=.5*A(Ntc)
690 MAT X=X*(Dtc*4.)
788 CALL Fft 14<N,Cos(*),X(*),Y(*))
710 FOR Ns=O TO N2
720 Ar=X<Ns)
730 IF Ar>O. THEN 760
740 PENUP
750 GOTO 770
768 PLOT Ns,LGT(Ar)
770 NEXT Ns
788 PENUP
790 ASSIGN #1 TO "'AOT2"
880 READ #1;A(*)
810 MAT A-A'(A(8))
828 MAT X=(0.)
830 MAT Y=(0.)
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840 X(O)=.5*A(8)
850 FOR tHs=1 TO Ntc-1
860 X(Ns)=A(Ns)
870 NEXT Ns
880 X(Ntc)=.5*R(Htc)
890 PNAT X=X*(Dt~c*4.)
900 CALL Fft14(H, Cos(*) ,X(*),*)
910 FOR Ns=O TO N2
920 Rr)<(Ns)
930 IF Ar>0. THEN 960
940 PENUP
958 COTO 970
960 PLOT Ns,LGT(Ar)
970 NEXT Ns
980 PENUP
990 PAUSE
1000 END
1010
1020 SUB Fftl4(DOUBLE H,REAL Cos(*),XC*),Y(*)) N<=2-14=16384; 0 SLUB$
1830 DOUBLE Log2n,N1,N2,N3,N4,J,K 1INTEGERS < 2-31 2,147,483,648
1040 DOUBLEII 23,4I,1,7,89,1,1,1213,1,L:1)
1058 IF N=1 THEN SUBEXIT
1060 IF N>2 THEN 1140
1878 A=X(0)+X(1>
108e X(1)-X(e)-X(l)
1090 X(a)=A
1100 A=Y(e)+Y(1)
1110 Y(1)=Y(8)-Y(1>
1120 Y(0)=8
1130 SIJBEXIT
1140 A=LOG(N)/LOG(2.)
1150 Log2n=A
1160 IF ABS(A-Log2n)(1.E-8 THEN 1190
1170 PRINT "N =";N;"IS NOT A POWER OF 2; DISALLOWED."
1180 PAUSE
11983 NI=N'4
1200 N2=N1+1
1210 N3=N2+1
1220 N4=N3+N1
1230 FOR 11=1 TO Log2n
1240 12=2'(Log2n-11)
1250 13z2*12
126e 14=N/13
1270 FOR 15=1 TO 12
1280 I6=(15-1)*14+1
1290 IF 16<=N2 THEN 1338
1308 A1=-Cos(N4-16-1)
1310 R2=-Cos(I6-N1-1)
1320 COTO 1350
1330 AlWCos(I6-1)
1340 A2=-Cos(N3-16-1)
1350 FOR 17=0 TO H-13 STEP 13
1368 18=17+15-1
1370 19=IB-12
1380 T1=X<18)
1390 T2=X(19)
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1400 T3=Y(18)
1418 T4=Y(19)
1420 A3=TI-T2
1438 R4=T3-T4
1448 X(I8)=TI+T2
1450 Y(I8)=T3+T4
1460 X(19)=RI*R3-R2*R4
1478 Y(19)=1*A4+R2*R3
1480 NEXT 17
1490 NEXT 15
1500 NEXT II
1518 l1=Log2n+l
1520 FOR 12=1 TO 14
1538 L(12-1)=l
1540 IF 12>Log2n THEN 1568
1550 L(12-I)=2^(II-12)
1560 NEXT 12
1570 K=8
1580 FOR 11=1 TO L(13)
1590 FOR 12=11 TO L(12) STEP L(13)
1600 FOR 13=12 TO L(II) STEP L(12)
1610 FOR 14=13 TO L(18) STEP L(11)
1628 FOR 15=14 TO L(9) STEP L(10)
1630 FOR 16=15 TO L(8) STEP L(9)
1648 FOR 17=16 TO L(7) STEP L(8)
1650 FOR I8=I7 TO L(6) STEP L(7)
1660 FOR 19=18 TO L(5) STEP L(6)
1670 FOR 110=19 TO L(4) STEP L(5)
1688 FOR 111=110 TO L(3) STEP L(4)
1690 FOR 112=111 TO L(2) STEP L(3)
1700 FOR 113=112 TO L(1) STEP L(2)
1710 FOR 114=113 TO L(8) STEP L(1)
1728 J=114-1
1730 IF K>J THEN 1880
1748 A=X(K)
1758 X(K)=X(J)
1760 X8J)=R
1770 R=Y(K)
1780 Y(K)=Y(J)
1790 Y(J)=R
1800 K=K+I
1810 NEXT 114
1820 NEXT 113
1830 NEXT 112
1848 NEXT 111
1850 NEXT 110
1860 NEXT 19
1870 NEXT 18
1888 NEXT 17
1890 NEXT 16
1900 NEXT 15
1910 NEXT 14
1920 NEXT 13
1938 NEXT 12
1940 NEXT It
1950 SUBEND
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APPENDIX A.4 - EVALUATION OF WAVENUMBER INTENSITY

SPECTRUM FOR ZERO DELAY (f,f' = 0)

A program for the numerical evaluation of the zeroth-order
Bessel transform of covariance My(AR,0) - y(w) is contained in
this appendix. Inputs required of the user are listed in lines
10 - 40 and are coupled to appendix A.2, where the data input,
AOR0 or AOR1 or AOR2, was generated. The numerical Bessel
transform is accomplished by means of Simpson's rule with end
correction [11; pages 414 - 418], and is exceedingly accurate for
the small increment, .005, in AR employed in line 30.

18 Dkc=.4 1 INCREMENT IN k^
20 Nkc=208 NUMBER OF k- VALUES
30 Drc=.005 1 INCREMENT IN DeIR^
40 Nrc=900 NUMBER OF DelRA VALLES
50 DOUBLE Nrc,Hkc,i,Ns I INTEGERS
68 REDIM C(O:Nrc)
70 REDIM Wi(8:Nkc>,WO(O:Hkc),WI(0: Nkc),W2(0:Nkc)
88 DIM C(900),Wi(200),WO(280),WI(288),W2(200)
90 ASSIGN #1 TO "AIRI"

18 READ #1;C(*)
110 FOR 1=0 TO Nkc
128 Kc=I*Dkc I k-
130 T=Kc*Drc
148 Se=So=8.
150 FOR Ns=1 TO Nrc-I STEP 2
168 So=So+Ns*FNJo(T*Ns)*C(Ns)
170 NEXT Ns
18 FOR Ns=2 TO Nrc-2 STEP 2
198 Se=Se+Ns*FNJo(T*Ns)*C(Ns)
206 NEXT Ns
210 WI(I)=C(8)+16.*So+14.*Se
220 NEXT I
238 MAT Wi=Wi*(Drc*Drc*2.*PI/15.)
248 ASSIGN #1 TO "AOR0"
250 READ #1;C(*)
260 FOR 1=0 TO Nkc
278 Kc=I*Dkc
288 T=Kc*Drc
290 Se=So=O.
300 FOR Ns=l TO Nrc-I STEP 2
318 So=So+Ns*FNJo(T*Ns)*C(Ns)
320 NEXT Ns
330 FOR Hs=2 TO Nrc-2 STEP 2
340 Se=Se+Ns*FNJo(T*Ns)*C(Hs)
350 NEXT Ns
360 WO(I)=C(8)+16.*So+14.*Se
370 NEXT I
388 MAT WO=WO*(Drc*Drc*2.*PI/15.)
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390 ASSIGN #1 TO "RORI"
400 READ #1;C(*)
410 FOR I=0 TO Nkc
420 Kc=I*Dkc
430 T=Kc*Drc
440 Se=So=O.
450 FOR Ns=1 TO Nrc-i STEP 2
460 So=So+Ns*FNJo(T*Hs)*C(Ns)
470 NEXT Ns
480 FOR Ns=2 TO Nrc-2 STEP 2
490 Se-Se+Ns*FNJo(T*Ns)*C(Hs)
500 NEXT Ns
510 W1(I)=C(0)+16.*So+14.*Se
520 NEXT I
530 MAT Wl=Wl*(Drc*Drc*2.*PI/15.)
540 ASSIGN #1 TO "ROR2"
550 READ #I;C(*)
560 ASSIGN #1 TO
570 FOR 1=0 TO Nkc
580 Kc=I*Dkc
590 T=Kc*Drc
600 Se=So=O.
610 FOR Ns=l TO Nrc-i STEP 2
620 So=So+Ns*FNJo(T*Ns)*C(Hs)
630 NEXT Ns
640 FOR Ns=2 TO Nrc-2 STEP 2
650 Se=Se+Ns*FNJo(T*Ns)*C(Ns)
660 NEXT Ns
670 W2(I)=C(O)+16.*So+14.*Se
680 NEXT I
690 MAT W2=W2*(Drc*Drc*2.*PI/15.)
700 GINIT 200/260
710 PLOTTER IS 505,"HPGL"
720 PRINTER IS 505
730 LIMIT PLOTTER 505,0,200,0,260
740 VIEWPORT 22,85,19,122
750 WINDOW O,Nkc,-9,1
760 PRINT "VS5"
770 GRID 25,1
780 PRINT 'VS36"
790 FOR I=8 TO Nkc
800 W=Wi(1)
81e IF W>O. THEN 840
820 PENUP
830 GOTO 850
840 PLOT I,LGT(W)
850 NEXT I
860 PENUP
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878 FOR 1=0 TO Nkc
880 W=140(I)
890 IF W>8. THEN 920
900 PENIJP
910 GOTO 930
928 PLOT I,LGT(W)
930 NEXT I
940 PENUP
958 FOR 1=0 TO Nkc
960 W=WICI)
970 IF W>8. THEN 18000
988 PENUP
990 GOTO 1818
1080 PLOT IOLGT(W)
1010 NEXT I
1028 PENUP
1838 FOR 1=0 TO Nkc
1848 1,4=W2<1)
1858 IF W>O. THEN 10888
1060 PENUP
1070 GOTO 1898
1080 PLOT I,LGT(W)
1098 NEXT I
1188 PENUP
1118 PAUSE
1128 PRINTER IS CRT
1130 PLOTTER 505 IS TERMINATED
1148 END
11508
1160 DEF FNJo(X) Jo(X) FOR ALL X
1170 Y=ABS(X)
1188 IF Y>8. THEN 1280
1198 T-Y*Y 1 HART, #5845
1200 P=2271490439.5536033-T*(5513584.5647707522-T*5292.61713O:3845574)
1218 P=2334489171877869.7-T*(47765559442673.588-T*<4621722250331.718eo3I-T*P:))
1228 P=185962317621897804. -T*(44145829391815982. - g*P)
1230 Q=204251483.52134357+T*(494030.79491813972+T*(884.72036756175504+T))
1240 0=2344750013658996.8+T*(15815462449769.752+T*(64398674535. 133256+T*LQ9:
1258 0=185962317621897733.+T*Q
1260 Jo=P/Q
1270 RETURN Jo
1280 Z=8./Y 1HART$ #6546 &4 6946
1298 T=Z*Z
1308 Pn=2204.5010439651804+T*(128.67758574871419+T*.90047934748028803')
1318 Pn=8554.8225415066617+T*(8894.4375329606194+T*Pn)
1320 Pd=2214.0488519147104+T*'(130.88490049992388+T)
1330 Pd=8554.8225415066628+T*(8903.8361417095954+T*Pd)
1340 Qn=13.990976865960680+T*d1.0497327982345548+T*.009352.59532940319:3
1350 Qn=-37.510534954957112-T*<46.093826814625175+T*Qr,)
1360 Qd=921.56697552653090+T*(74.428389741411179+T)
1370 Qd=2400.6742371172675*T*(2971.9837452084920+T*Qd)
1388 T=Y-. 78539816339744828
1390 Jo=.28209479177387820*SQR<Z)*(COS(T)*Pn/Pd-Slt-I(T)'-*0*Qn./,rd'i
1400 RETURN Jo
1410 FNEtID

6 1/62
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APPENDIX A.5 - EVALUATION OF PHASE MODULATION INTENSITY SPECTRUM

The normalized covariance function for phase modulation is

given by (2.50) in the main text, namely

ko •) - exp[_ rý P2 [1 - exp(-C)] - A(2 - p(J)] +0 P (A.5-1)
2

+ 2A [1 - p(r,)] exp(-4/A) + A p(Z) expf-. PP [1 - exp(-bt,)])

for C k 0, where t is the time delay and p(ý) is the temporal2 2
normalized covariance of the field process. Also 2=

Since (A.5-1) involves an exponential of an exponential of an

exponential, and because a wide range of parameter values are of
interest, care must be taken in numerical evaluation of this

covariance and its transform.
Observe first that

k (0) - 1 since p(O) - I . (A.5-2)

Also, as delay t 4 +w, then p 4 0, giving

ko()0 exp[-r 1 -2A+ 2Aexp(-P /A)] p 0 . (A.5-3)

The spectrum of interest is given by

W o(W) - 4 f dt cos(w) ko0 () for w 1 0 ; w - 2nf • (A.5-4)

0

The nonzero value of (A.5-3) at Z - o leads to an impulse in

spectrum W0 (w) at w - 0. This limiting value, ko0 (w), must be

subtracted from covariance (A.5-1) prior to the numerical
Fourier transform indicated by (A.5-4).
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2For p << 1, the term

exp (- r p [1 - exp(-ý)] (A.5-5)

approaches its limiting value at 7 , +- as follows:

exp(- r ,p [1- exp(-i)])- exp(-r• "•) =

exp-r 2) [exp[r; P2 exp(-4))- 1]-

- exp -A rA 2) r 2 exp(-ý) . (A.5-6)

This is a fairly rapid decay with C and will not lead to
numerical difficulty when r, p <<2

2APFor large bp /A, the term

exp - - [1 - exp(-b?ý)]] (A.5-7)

is very sharp near C = 0; in fact, it is given approximately by

2

exp - -P b) for i. near 0 . (A.5-8)

Therefore, we define the sharp component of covariance k0 (t,) as

2
ks (t) - exp[- A + A exp(- --P b)j - exp(-A) for all t . (A.5-9)

Then

ks (0) = 1 - exp(-A) , ks(-) s 0 . (A.5-10)
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Now we let

k [k0(k ) - ks (1] + k (s) K

* kf(ý) + ks(ý) , (A.5-11)

where kf(I) is a flat function near Z - 0. Then we can express

the desired difference as

ko(Z) - ko0)- [kf(ý) - ko(=)] + ks() =

* kl(ý) + ks(C) , (A.5-12)

where functions kl(ý) and ks(c) both decay to 0 at C - 0. We now
employ two separate FFTs on each of the functions in (A.5-12).
The sharp component, ks (Z), must be sampled with a very small

increment, a, when bp 2/A is large. On the other hand, the flat
component

kl(C) - kf(ý) - ko(-) (A.5-13)

can be sampled in a coarser fashion. Finally, if bp 2/A is
moderate, we work directly with ko(i) - k (-) without breaking
it into any components.

Two programs are furnished in this appendix, one for moderate
bp /A, and the other for the flat component (A.5-13) when bpP/A
is large. For sake of brevity, the Fourier transform of the
sharp component (A.5-9) is straightforward and is not presented.
The particular covariance p(C) adopted is triangular,

P(Z) - 1 for ICI < <c 0 otherwise , (A.5-14)

but can easily be replaced. The parameter 1 c is the cutoff value
of covariance p(C).
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The number of samples, N, taken of the covariance, in order
to perform the FFT of (A.5-4), is rather large, so as to
guarantee a very small value of truncation error at the upper end
of the integral, despite the small increment AC. In order to
keep the FFT size, Mf, at reasonable values, the data sequence is
collapsed without any loss of accuracy according to the method
given in [8; pages 7 - 8] and [9; pages 13 - 16]. The
trapezoidal rule is used to approximate the integral in (A.5-4),
for reasons given in [8; appendix A].

18 SPECTRUM FOR PHASE MODULATION - MODERATE
28 Mup=l. I MUsubP
38 Gp=.001 I Gamma'
48 Bs=I. 1 b
58 A=.2 A A
68 Zc=2.*Pl ! Rho(Z) = 0 for IZ>Zc; Z-=zeta
78 Delz=.005 ! Zeta increment
88 N=608880 Maximum number of samples of, ko(zetBL)
98 Mf=16384 1 Size of FFT

188 DOUBLE H,Mf,Ms,Ns INTEGERc
118 DIM X(16384),Y(16384),Cos(4896)
128 REDIM X<0:Mf-1),Y(0:Mf-1),Cos(8:Mf/4)
130 MAT X=(8.)
148 MAT Y=(0.)
158 T=2.*PI/Mf
168 FOR Ms=O TO Mf/4
178 Cos(Ms)=COS(T*Ms) I QUARTER-COSINE TABLE
188 NEXT Ms
198 Ta=Gp*Mup*Mup
208 IF 8=8. THEN 228
210 TbmMup*Mup/A
220 Tc=2.*R*FNExp(Tb)
230 Kinf=FNExp(Ta+2.*A-Tc) I CORRELATION AT INFINITY
240 COM A,Bs,Zc,Ta,Tb,Tc,Kinf
258 T=l.-Kinf
268 PRINT 8,T
270 X(8)=T*.5 I TRAPEZOIDAL RULE
288 FOR Ns=l TO N
298 Corr.=FNKo(Ns*Delz) ! CORRELATION ko(zeta)
300 IF Ns<6 THEN PRINT Ns,Corr
318 IF ABS(Corr)<l.E-30 THEN 358
328 Ms=Ns MODULO Mf I COLLAPSING
338 X(Ms)=X(Ms)+Corr
348 NEXT Hs
358 PRINT "Final value of Corr. =";Corr;" Ns. =";Ns
368 HAT X=X*(Delz*4.)
378 CALL Fftl4(Mf,Cos(*),X(*),y(*))
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380 GINIT
390 PLOTTER IS "GRAPHICS"
400 GRAPHICS ON
410 WINDOW -2,2,-60,0
420 LINE TYPE 3
430 GRID 1,10
440 LINE TYPE 1
458 Delf=l./CMf*Delz)
460 FOR Ms=1 TO M'/2
470 F=Ms*Delf 1 FREQUENCY
480 PLOT LGT(F),10.*LGT(X(Ms))
490 NEXT Ms
580 PENUP
518 PAUSE
520 END
530
540 DEF FNExp(Xminus) EXP(-X) WITHOUT UNDERFLOW
550 IF Xminus>708.3 THEN RETURN 0.
560 RETURN EXP(-Xminus)
570 FNEND
580
590 DEF FNKo(Zeta) ! CORRELATION ko(zeta)
600 COM A,Bs,Zc,Ta,Tb,Tc,Kinf
610 Rho=MAX(0.,1.-Zeta/Zc) I TRIANGULAR RHO
620 El=Ta*(1.-FNExP(Zeta))
630 E2=Tb*(l.-FNExp(Bs*Zeta))
640 E3=R*Rho*FNExp(E2)
650 RETURN FNExp(EI+A*(2.-Rho)-Tc*(1.-Rho)-E3>-Kinf
660 FNEHD
670
680 SUB Fft14(DOUBLE N,REAL Cos(*),X(*),Y(*)) ! N<=2^14=16384; 0 SUBS
690 I SEE APPENDIX A.3

10 I SPECTRUM FOR PHASE MODULATION - FLAT COMPONENT
20 Mup=l. I MUsubP
30 Gp=.601 I Gamma'
40 Bs=I. I b
50 A=O. I A
60 Zc=2.*PI I Rho(Z) = 0 for IZl>Zc; Z=zeta
70 Delz=.005 1 Zeta increment
80 N=60000 I Maximum number of samples of kl(zeta)
98 Mf=16384 ! Size of FFT

100 DOUBLE H,Mf,Ms,Ns 1 INTEGERS
110 DIM X(16384),Y(16384),Cos(4096)
120 REDIM X(0:Mf-1),Y(0:Mf-I),Cos(8:MV/4)
130 MAT X=(0.)
140 MAT Y=(O.)
150 T=2.*PI/Mf
160 FOR Ms=O TO Mf/4
170 Cos(Ms)=COS(T*Ms) QUARTER-COSINE TABLE
180 NEXT Ms
190 Ta=Gp*Mup*Mup
200 IF A=0. THEN 220
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210 Tb=Mup*Mup/H
228 Tc=2. *A*FNExp(Tb)
230 Tb=5.E55
240 Kinf=FNExp'.Ta+2.*A-Tc) CORRELATION AT INFINITY
250 Ea-FNExp(A)
260 Tbb=Tb*Bs
270 CON A,Bs,Zc,Ta,Tb,Tc,Kinf,Ea, Tbb
280 T=1.-Kinf'-(1.-Ea) ISUBTRACT SHARP COMPONENT
290 PRINT 0,T
300 X(G)=T*.5 1 TRAPEZOIDAL RULE
310 FOR INs=1 TO N
320 Corr=FNKICNs*Deiz) 1CORRELATION kl(zeta)
330 IF Ns(6 THEN PRINT Ns,Corr
340 IF ABS(Corr)(1.E-30 THEN 380
350 Ms=Ns MODULO Mf ICOLLAPSING
360 X(IMs)=X(Ms)+Corr
370 NEXT Ns
380 PRINT "Final value of~ Corr =";Corr;" Ns =";Ns
390 MAT X=X*(Delz*4.)
400 CALL Fft 14(Mf,Cos(*) ,X(*) ,Y(
410 GINIT
420 PLOTTER IS "GRAPHICS"
430 GRAPHICS ON
440 WINDOW -2,2,-60,O
450 LINE TYPE 3
460 GRID 1,10
470 LINE TYPE 1
480 Delf~l./(M1*Deiz)
490 FOR Ms=1 TO Mf12
500 F=Ms*Delf 1 FREQUENCY
510 T=X<Ms)
520 IF T>O. THEN 550
530 PENUP
540 GOTO 560
550 PLOT LGT(F),10.*LGT(T)
560 NEXT Ms
570 PENUP
580 PAUSE
590 END
600
610 DEF FNExp(Xrninus) !EXP(-X) WITHOUT UNDERFLOW
620 IF Xminus>708.3 THEN RETURN 0.
630 RETURN EXP(-Xminus)
640 FNEND
6509
660 DEF FHK1(Zeta) 1 CORRELATION k'(zeta)
670 CON A, Ds, Zc,Ta, Tb, Tc ,Ki nf,Ea,Tbb
680 Rho=MAX(0.,1.-Zeta/Zc) 'TRIANGULAR RHO
690 E1=Ta*(1.-FNExp(Zeta))
700 E2=Tb*(1. -FNExp(Bs*Zet a))
710 E3AR*Rho*FN-Exp(E2)
720 E4=FHExp(Tbb*Zeta)
730 Sharp=FNExp(A*(1.-E4))-Ea Iks(zeta)
740 RETURN FNlExp(EI +A*(2. -Rho)-Tc* 1. -Rho)-E3)-Ki nCf-SIharF'
750 FNEND
760
770 SUB Fft14(DOUBLE N,REAL Cos<*),X<*),Y(*)> I <-1168;L SUPS
780 1 SEE APPENIDIX R.3
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APPENDIX A.6 - EVALUATION OF FREQUENCY MODULATION

INTENSITY SPECTRUM

The normalized covariance function for frequency modulation

is given by (2.48) in the main text, namely

ko(t) - exp[- rj P2 [exp(-C) + C - 1] - A[2 - p(C)] +

2

+ A p(C) exp F [exp(-bC) + bC - 1])] for C Z 0 , (A.6-1)
Ab

where C is the time delay and p(C) is the temporal normalized

covariance of the field process. Also, pF = .FG and

b - AwA/AwN. Since (A.6-1) involves an exponential of an

exponential of an exponential, and because a wide range of

parameter values are of interest, care must be taken in numerical

evaluation of this covariance and its transform.

Observe that

ko0 (0) - 1 , because p(O) = 1 . (A.6-2)

Also, as delay C - +w, then p 4 0, giving

ko (4) - exp(- rq p, (4 - 1) - 2A) a kl(C) for C > 0 . (A.6-3)

This term, kl(C), decays slowly with C if r, p2 << 1

The spectrum of interest is given by

Wo(w) = 4 [ dC cos(wC) ko () for w Z 0 ; w = 2nf . (A.6-4)

0

The spectrum corresponding to the limiting component, k,(C) in

(A.6-3), is directly available in closed form as
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W,(w -4 fdý cos(caC) k1K)
0

4 r 2

-exp(rq M2 2A) r' AF (A.6-5)

If rj p2<< 1, this latter quantity is large and very sharply
peaked at w - 0; hence, this term has been subtracted out and
handled separately when ri P << 1. The residual covariance,

ko0(1 - k1 (Z), then decays very rapidly with C and is easily

handled directly by means of an FFT. This breakdown is not

necessary when r, y4 - 1 and is avoided, then, by handling
ko(Z) directly in one FFT.

For p2/A >> 1, the term

2

exp(- Z- [exp(-bC) + bC - 1 (A.6-6)
Ab

inside the exponential in (A.6-1) behaves like

2L F 1 r 2) 0A.-7)
exp A near 0 ,.6

where its major sharp contribution arises. For example, if

-F = 50, A - 1, then increment A - .005 leads to values for
(A.6-7) of

exp(-0.156 n2 ) at C - n A , (A.6-8)

which is adequately sampled in order to track its dominant

contribution; the actual sequence of values is 1, .856, .536,

.247, .083. For smaller pF/A, this sampling interval is more

than adequate.
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Two programs are furnished in this appendix, one each for the
2cases of large and small r, p•F The particular covariance p(C)

adopted is triangular,

P(K) = 1 - l for ICI < % ' 0 otherwise (A.6-9)
c #

but can easily be replaced. The parameter %c is the cutoff
covariance value and is specified numerically in the examples in
figures 3.9a through 3.1Ob.

18 SPECTRUM FOR FREQUENCY MODULATION - LARGE Gp*Muf'2
20 Muf=50. MUsubF
30 Gp=.001 1 Gamma"
48 Bs=I. 1 b
50 R=.2 I A
60 Zc=2.*PI Rho(Z) =0 for ••ZI>Zc; Z=zeta
78 Delz=.005 I Zeta increment
88 N=60000 Maximum number of samples of' ko(zeta)
98 Mf=16384 Size of FFT

180 DOUBLE N,Mf,Ms,Ns 1 INTEGERS
110 DIM X(16384),Y(16384),Cos(4896)
120 REDIM X<O:Mf-I),Y(8:Mf-I),Cos8: Mf/4)
130 MAT X=(O.)
140 MAT Y=(8.)
150 T=2.*PI/Mf
160 FOR Ms=8 TO Mf/4
170 Cos(Ms)=COS(T*Ms) ! QUARTER-COSINE TABLE
188 NEXT Ms
190 Ta=Gp*Muf*Muf
200 IF A=0. THEN 220
210 Tb=Muf*Muf/(A*Bs*Bs)
220 Tc=FNExp(2.*A-Ta)*Ta
230 Td=Ta*Ta
240 COM A,Bs,Zc,Ta,Tb
250 X(8)=.5 I TRAPEZOIDAL RULE
260 FOR Ns=l TO N
270 Corr=FNKo(Hs*Delz) ! CORRELATION ko(zeta)
280 IF Corr<1.E-20 THEN 320
290 Ms=Ns MODULO Mf I COLLAPSING
300 X(Ms)=X(Ms)+Corr
310 NEXT Ns
320 PRINT "Final value of Corr =";Corr;" Ns =";Ns
330 MAT X=X*<Delz)
340 CALL Fft14("Mf,Cos(*),X(*),Y(*))
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358 GINIT
368 PLOTTER IS "GRAPHICS"
378 GRAPHICS ON
388 WINDOW -4,2,-70,30
398 LINE TYPE 3
408 GRID 1,18
418 LINE TYPE 1
428 Delf=1./(Mf*Deiz)
438 FOR Ms=l TO Mf/2
440 F=Ms*Delf 1 FREQUENCY
458 T=X(Ms)
468 IF T>8. THEN 498
478 PENUP
488 GOTO 588
498 PLOT LGT(F>,1.*LGT(T)
588 NEXT Ms
518 PENUP
528 Add=X(8)-Tc/Td 1 ORIGIN CORRECTION
538 F=I.E-4
548 FOR Ns=l TO 188
558 W=2.*PI*F
568 WI=Tc/(Td+W*W)
578 T=Wl+Rdd
580 IF T>8. THEN 610
598 PENUP
600 GOTO 628
618 PLOT LGT(F),1I.*LGT(WI+Add)
628 F=F*I.1 1 FREQUENCY
638 IF F>Delf THEN 650
648 NEXT Ns
658 PENUP
668 PAUSE
670 END
688 !
698 DEF FNExp(Xminus) 1 EXP(-X) WITHOUT UNDERFLOW
788 IF Xminus>788.3 THEN RETURN 0.
718 RETURN EXP(-Xminus)
728 FNEND
730 i
748 DEF FNKo(Zeta) 1 CORRELATION ko(zeta)
758 COM A,Bs,ZcTa,Tb
768 El=FNExp(Zeta)+Zeta-1.
770 T=Bs*Zeta
780 E2=FHExp(T)+T-1.
790 Rho=MAX(0.,l-Zeta/Zc) I TRIANGULAR RHO
800 T=Ta*EI+R*(2.-Rho)-ARRho*FNExp(Tb*E2)
810 RETURN FNExp(T)
820 FNEND
830
840 SUB Fftl4(DOUBLE N,REAL Cos(*),X(*),Y(*)) I (-N=214=16384; 0 SUPS
858 1 SEE APPENDIX A.3
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10 SPECTRUM FOR FREQUENCY MODULATION - SMALL Gp*Muf'-2
20 Muf=l. t MUsubF
30 Gp=.001 1 Gamma'
40 Bs=I. ! b
50 R=.2 A A
60 Zc=2.*PI I Rho(Z) = 0 for IZI>Zc; Z=zeta
70 Delz=.005 I Zeta increment
8s N=18000 Maximum number of samples of |ko(zeta)
90 Mf=8192 I Size of FFT
100 DOUBLE N,Mf,MsNs INTEGERS
110 DIM X(8192),Y(8192),Cos(2048)
120 REDIM X(8:Mf-1),Y(O:Mf-1),Cos(O:Mf/4)
130 MAT X=(0.)
140 MAT Y=(O.)
150 T=2.*PI/Mf
160 FOR Ms=6 TO Mf/4
170 Cos(Ms)=COS(T*Ms) I QUARTER-COSINE TABLE
180 NEXT Ms
190 Ta=Gp*Muf*Muf
200 IF A=O. THEN 220
210 Tb=Muf*Muf/(A*Bs*Bs)
220 T=FNExp(2.*A-Ta)
230 Tc=T*Ta
246 Td=Ta*Ta
258 Delf=.l*Ta/(Z.*PI) I INCREMENT IN FREQUENCY
260 COM R,Bs,Zc,Ta,Tb
270 X(8)=.5*(I.-T) 1 TRAPEZOIDAL RULE
280 FOR Ns=l TO N
290 Corr=FNKol<Ns*Delz) ! CORRELATION ko(zeta)-kl~zeta)
300 IF ABS(Corr)<1.E-30 THEN 340
310 Ms=Ns MODULO Mf 1 COLLAPSING
320 X(Ms)=X(Ms)+Corr
330 NEXT Ns
340 PRINT "Final value of Corr =";Corr;" "s ="10s
350 MAT X=X*(Delz)
360 CALL FftI4(Mf,Cos(*),X(*),Y(*))
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370 GINIT
380 PLOTTER IS "GRAPHICS"
39e GRAPHICS ON
400 WINDOW -402,-70,30
410 LINE TYPE 3
420 GRID 1,10
430 LINE TYPE 1
440 FOR Ms=1 TO 2008
450 F=lls*Delf !FREQUENCY
460 W=2.*PI*F
470 W1=Tc/(ld+W*W) ! SHARP SPECTRAL COMPONENT
480 T=Mf*Delz*F
490 Ns=INT(T)
500 Fr-T-Ns
518 W2=Fr*X(Ns+1)+(1.-Fr)*X(Ns> BROAD SPECTRAL COMPONENT
520 PLOT LGT(F)010.*LGT(WI+W2)
530 NEXT Ms
548 Ns=MRX(Ns,l)
550 FOR Ms=Ns TO Mf/'2
568 F=Ms/(MC*Delz) 1FREQUENCY
570 W=2.*PI*F
588 WI=Tc/(Td+W*W)
590 W2=X(Ms)
600 T=W1+W2
610 IF T>0. THEN 649
620 PENUP
630 GOTO 658
640 PLOT LGT(F),10.*LGT(T)
650 NEXT Ms
660 PENUP
670 PAUSE
680 END
690
700 DEF FNExp(Xminus) EXP(-X) WITHOUT UNDERFLOW
710 IF Xm~inus>708.3 THEN RETURN 0.
720 RETURN EXP(-Xminus)
730 FNEND
740
758 DEF FNKoI(Zeta) ! CORRELATION ko(zeta)-kl(zeta)
760 CON R,Bs,Zc,TafTb
770 E1=FNExp(Zeta)+Zeta-1.
780 T=Bs*Zeta
798 E2=FNExp<T)+T-1.
800 Rho=MAX(8.,1-Zeta/Zc) !TRIANGULAR RHO
818 T=Ta*EI+A*(2.-Rho)-R*Rho*FNExp(Tb*E2)
820 RETURN FNExp(T)-FNExp(Ta*(Ze-ta-1.)+2.*A)
830 FNEND
840 i
850 SUB Fftl4(DOUBLE N,REAL Cos(*),X(*),Y(*)) ! N<=2-14=16384; 0 SUE,
860 !SEE APPENDIX A.3
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ABSTRACT

The characteristic function of the output of a filtered and
weighted energy detector, subjected to a nonstationary Gaussian
input signal in the presence of colored Gaussian noise, is

derived in closed form. This result allows and accounts for
mismatch in the receiving filter frequency characteristics
relative to the received signal and noise spectra. It also
allows for uncertainty in the time location and/or duration of
the received signal, by way of arbitrary time weighting of the
squared filter output.

Programs for evaluation of the receiver operating

characteristics, for white noise inputs as well as colored noise
inputs, are furnished in BASIC and exercised for a number of

examples. This approach allows for precise quantitative
investigation of the degradation associated with filtered energy

detection in the presence of uncertainties.
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EXACT PERFORMANCE OF FILTERED AND WEIGHTED ENERGY DETECTOR WITH

MISMATCHED FREQUENCY AND TIME LOCATIONS AND CHARACTERISTICS

INTRODUCTION

The detection of weak random signals of unknown duration,

bandwidth, time location, and frequency shift in the presence of

colored noise is often accomplished in practice by filtering the

received waveform to the frequency band of interest, squaring the

filter output, and time-weighting this quantity prior to

accumulation and threshold comparison. The performance of this

processor obviously depends on the spectra of the received signal

and noise processes as well as on the transfer characteristics of

the filter employed. Lack of detailed knowledge of the signal

spectral characteristics or frequency shift will often dictate

that a fairly broad (mismatched) filter passband be utilized in

order that the signal be passed when present. Similarly,

uncertainty about the signal location or duration will mandate

that the receiver observation time be lengthened in order to

ensure capture of any impingent signal energy.

Additionally, the received signal process is often

characterized as a finite-duration burst of a stationary process.

Since the signal time location and duration are often unknown,

the receiving filter must be kept open at all times, thereby

allowing the filter output noise to reach its full-strength

steady state value. By contrast, a gated input signal leads to a

filter output component which gradually builds up in time and

1
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then decays slowly after the signal is turned off. These

nonstationary effects, coupled with the particular time weighting

employed during the observation interval, influence the

performance of the detector in a complicated nonobvious fashion.

There is a need to be able to calculate exactly the

performance of this type of signal processor in the presence of

such deleterious factors, so that the degradations associated

with lack of knowledge can be ascertained quantitatively.

Furthermore, it will not suffice to resort to Gaussian

approximations for the processor output, because the number of

samples employed are not large enough to utilize the central

limit theorem, especially on the tails of the distribution (small

false alarm probabilities) where we are interested. This need is

addressed in this report for the case of Gaussian input signals

in Gaussian noise, with the result that programs are furnished

for exactly assessing the performance of the mismatched energy

detector for a very wide variety of characteristics and

selections of parameters. In particular, no presumptions are

made about the input signal time-bandwidth product or about the

size of the product of observation time and filter bandwidth.

2
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SYSTEM DESCRIPTION AND ASSUMPTIONS

input DIGITAL• 1 WEIGHTED outputw~A
6-FILTER SQUARER 2 1 SUMMER

x(kA) a h(ma) y(ka}d y2(ka) kaz

Figure 1. Block Diagram of Detector

The detector of interest is the digital processor depicted in

figure 1; time sampling increment A is arbitrary but should be

approximately matched to the coherence times of the input signal

and filter. The digital input sequence x(kA), filter impulse

response A h(mA), and summer weights w(kA) are all real. Input

x(kA) consists of aither noise-alone or gated signal plus noise,

according to model

f n (kA)

x(kA) = or for all k()

s(kA) g(kA) + n(ka)

Input noise n(kA) is present for all time and is a stationary

zero-mean discrete Gaussian sequence with covariance

Rn(mA) - n(kA) n(kA-mA) for all m,k , (2)

where an overbar denotes an ensemble average. The numerical

evaluation of the values of the noise covariance, directly from

a specified noise spectrum Gn(f), is considered in appendix A.

Underlying input signal s(kA) in (1) (if present) is also a

3
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stationary zero-mean discrete Gaussian sequence with covariance

R s(mA) = s(kA) s(kA-mA) for all m,k . (3)

However, input signal samples s(kA) are gated by function g(kA)

which is nonzero only in a limited time region:

g(kA) - 1 for ka I k I kb , zero otherwise (4)

This results in a gated burst of stationary signal sequence s(kA)

being inputted to digital filter h(mA); the input signal

starting and ending times kaa and kb A, respectively, are

generally unknown, except in an approximate way. This generality

allows for consideration of input signals of unknown arrival time

and duration at the detector input.

The filter output y(kA) can be conveniently broken into

signal and noise components, in accordance with (1), and is

available by means of discrete convolution

y(kA) E A h(mA) x(kA - mA) - ys(ka) + y n (kA) , (5)
m

when an input signal is present. (Summations without limits are

over (-=,+=).) However, due to the gating in (1), filter output

signal ys(kA) will have transient phases, including a buildup

just after time kaa and a decay just after time kbA. This

nonstationary behavior is included and exactly accounted for in

the following analysis.

The filter output (5) is then squared, scaled by weights

w(kA), and summed to give system output

4
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z - . w(kA) y 2 (kA) , (6)
k

where the weights are nonzero only in a limited observation time

specified by

w(kA) # 0 for kc I k I kd (7)

These weights need not be uniform; for example, they could be

exponential. Output z is compared with a threshold for a

declaration of signal absent versus signal present.

Observation time limits kCA and kdA are under the control of

the receiver processor, and would hopefully match fairly well the

time, interval over which the gated input signal is received; see

(4). But, in any event, the degree of generality in (7) allows

for investigation of observation times that might be too short,

thereby losing some signal energy, or too long, thereby picking

up additional unwanted noise components; both situations lead to

deterioration of the detectability of weak signals and should be

avoided if possible. An illustration of the parameters is given

in figure 2, for signal-only present.

input signal samples

k aT

Figure 2. Gated and Observation Intervals; No Noise

5
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FILTER OUTPUT NOISE CHARACTERIZATION

The filter output noise sequence is obtained from discrete

convolution (5) and (1) as

Yn (kA) - A E h(mA) n(kA - mA) for all k , (8)
m

where it is presumed that the filter h(mA) has been open to noise

input n(kA) for all time; this results in noise output yn(kA)

being a zero-mean stationary Gaussian sequence. The filter

output noise covariance at general times k1A and k 2 a is given by

Cn(k1A,k 2A) = Yn(kA) Yn(k 2A) -

- A2 = h(mA) h(pA) n(k 1 A - mA) n(k2A - pA) -
mp

- A2 = h(mA) h(pa) Rn(k 1 -a k2A + pA - mA) -
mp

# h(J} Rn(k1a - k2a - ja) , (9)

where the filter correlation function is defined as

+h(ja) & A2 1 h(mA) h(mA - jA) for all j . (10)
m

The right-hand side of (9) is a function only of the time

difference k1A - k 2A, in keeping with the stationarity of filter

output noise Yn(kA).

6
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If the input noise in figure 1 is white, its covariance in

(2) becomes

Rn(mA) 2 nmo , (11)

where a 2 is the input noise power. In this case, the filterne

output noise covariance in (9) simplifies to

Cn(k ,Ak2 A) - +h h(klA - k2 •} for white input noise . (12)

The numerical evaluation of filter correlation function +h(ja) in

(10), directly from a specified transfer function H(f), is

considered in appendix B. A possible problem with discontinuous

functions is treated in appendix C.

7
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FILTER OUTPUT SIGNAL CHARACTERIZATION

The filter output signal sequence (when present) follows from

(5) and (1) as

Y (kA) - A T h(kA - mA) s(mA) g(m&) for all k . (13)
Sm

M.

The finite duration of gating sequence g(kA) in (4), as well as

the realizability of impulse response A h(ma), will serve to

terminate the summation in (13) at finite limits.

We presume that filter h(mA) in figure 1 is realizable; that

is,

h(mA) = 0 for m < 0 . (14)

This makes filter output signal ys(kA) in (13) equal to zero for

k < ka. On the other hand, if the filter has an infinite-

duration impulse response A h(mA), then ys(kA) is nonzero for

k I ka; see figure 3. However, the filter output noise y n (kA)

will dominate the signal output for k >> kb, meaning that per-

formance of the detector will be poor in the case when kd >> kb-

That is, too long an observation time in (7), relative to the

signal duration, is detrimental to signal detectability.

steady state_

buildup-,- decay

Figure 3. Filter Output Signal Buildup and Decay

8
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The signal output, ys(kM) in (13), from filter h(mA) is not

stationary. The filter output signal covariance is defined as

Cs(k 1 A,k 2 A) - Ys(k0) Ys (k 2 A) - Cs(k 2 A,k1 A) for all kl,k 2 . (15)

This function is zero for k < ka or k2 < ka; therefore, in the

following, we can confine calculation of (15) to k1 k a and

k2 k a. The particular filter output signal sample ys(kaA) is

nonzero only if h(O) 0 0.

Substitution of (13) in (15) and the use of (3) yields

Cs (kIAk2A) - a2 = h(k 1 A-mA) h(k 2 A-P4) s(m4) s(pA) g(mA) g(pA)-
mp

= 42 h(k 1 A-mA) h(k 2 -pA) Rs(mA-pA) g(mA) g(pA) . (16)
mp

When we take explicit account of realizability condition (14) and

the finite duration of unity gating function g(kA) in (4), the

filter output signal covariance in (16) can be efficiently

computed according to

K1 K2

C s (k IA,k2 = 2 A--= h(k 1 -mA}-) = h(k 2 4-pA) Rs(mA-pA) , (17)
m=ka p=ka

where

K1 = min(kl,kb) , 2 = min(k 2 ,kb) . (18)

Since kb a kai k, a kaI k2 Z kat it follows that K1, ka and

K2 2 ka, thereby making the summations in (17) treat only

nonzero entries.

9
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SUMMER CONSIDERATIONS

The weighted summer in figure 1 and (6) - (7) takes its

samples at times kA, where kc i k I kd. If kd < ka' then no

signal gets into the summer, and the signal at the input cannot

be detected at all, whether present or not. Since this is not a

useful application of the detector in figure 1, the only

situation we will address is that where kd 2 ka' so that some

signal (when present) contributes to the summer output.

There are then two possibilities for observation start time

kc , as indicated in figure 4 below. If kc < ka (case 1), the

summer is taking in noise-only samples for kc I k < ka; this will

degrade performance of the detector but is sometimes unavoidable

when the signal onset time, kaY, is unknown. In this case, we

only need to compute signal output covariance Cs(k A,k 2 6) for

ka S k1 ,k 2 1 kd, since Cs - 0 for k1 < ka or k 2 < ka-

On the other hand, if kc a ka (case 2), signal is taken into

the summer on all samples available to it. However, if kc is

considerably larger than ka, a significant portion of the signal

contribution can be lost; this degradation of performance is

. •e

"- - ys(ka)

kcl ka kc2 kd k

Figure 4. Filter Output Signal y (k&)
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sometimes unavoidable when ka is unknown. In this latter case,

we only need to compute Cs(k1A,k 2 A) for kc I k1lk 2 1 kd'

The general rule is that we need to compute, from (17), the

filter output signal covariance Cs(k 1 A,k 2 A) for

KO 0 max(ka kc) c k1 ,k 2 4 kd . (19)

Then, if kc < ka' use 0 for Cs(kA,k2A) for those values where

k < ka or k 2 < ka. Of course, noise covariance Cn(k 1 A,k 2 A) in

(9) or (12) must be computed for kc I k11 k2 1 kd in all cases.

Since, front (19),

k 11 max(ka k c ) ka, then K1 - min(kl,kb) k ka ; (20)

also, since

k2 1 max(ka,kc) I ka, then K2 - min(k 2 ,kb) Ž k . (21)

Therefore, the sums in (17) always have some entries; that is,

the upper limit is never less than the lower limit. The only

restriction is

ka I kd. (22)

Of course, we must always have ka :S kb and kc I kdo

In summary, the filter output signal covariance follows from

(17) and (18), while the filter output noise covariance is

available in (9) or (12). The region where the lilter output

signal covariance Cs(k 1 A,k 2 A) calculation is nonzero is

crosshatched in figure 5 for the case where kc < ka. If

kc , ka, then Cs(kA,k 2A) is nonzero in the larger square

indicated in figure 5.

11
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k 2

k d-

0

I /
a"

0 0
kC I Ikc

I I
I I

kc ka kd k1

Figure 5. Calculation Region for C s(k1Ajk2 A
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CHARACTERISTIC FUNCTION OF SYSTEM OUTPUT z

The system output z is given in (6) as a sum of weighted and

squared correlated zero-mean Gaussian random variables y(kA).

Also, the covariance of the noise component yn(kA) is given by

(9) or (12), while the covariance of the signal component ys(kA)

(if present) is given by (17) - (18) and figure 5. Therefore,

the covariance of y(kA) is given by

Cy (k lA,k 2 A) - Cs(kI&,k 2 A) + Cn(klA,k 2 A) . (23)

The system input signal-to-noise ratio is R s(0)/R n(0) in terms of

input covariances (2) and (3).

For nonnegative weights (w(kA)}, we define random variables

ak - 1w(kA) y(kA) for kc I k I kd. (24)

Then, (6) - (7) yields the output in the form

z = -da k (25)--kmkc

where zero-mean Gaussian random variables JakI have covariance

Ca(kl,k 2 ) , ak1ak2 = 4w(klA) w(k 2 A) Cy(k 1 A,k 2 A) . (26)

In order to find the characteristic function of random

variable z in (25), we consider the square symmetric covariance

matrix C with elements (26) for kc I kl,k 2  i kd. Let Q be the

13
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normalized modal matrix of the orthonormal eigenvectors of C and

let A be the diagonal matrix of the eigenvaluss (Ak1 of C; see

(1; pages 36 - 39]. Then we have

QT Q = QQ QT .I, QC - A. (27)

Now let column vector A be made up of elements (aki for

kc I k I kd, as defined in (24), in which case (25) and (26) can

be expressed as

T Tz M A A, C = A A. (28)

Also, let column vector B be defined by linear transformation

B -QT A ; then A Q B. (29)

Substitution of (29) into (28) yields

kz -AT A -BT Q Q B - BT ,- • bk, (30)
k-k c

where fbk0 are the elements of B. At the same time, the

covariance matrix of vector B is

B ST Q T AA T Q - QT C Q - A, (31)

where we used (29), (281, and (27). Thus, the sum for z in (30)

is composed of uncorrelated (and therefore independent) zero-mean

Gaussian random variables lbk , where the variance of element bk

is eigenvalue Xk*

The characteristic function of random variable z in (30) is,

14
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using the independence and Gaussian character of {bkI,

k d

k d u - exp(i uz) - T [ expp iUk 2
k-kc

d du exp(i~u 2  -½ 1-uX ex -uIIk 2, k 2X~ x

k=kc

Although this final result is given as a finite product of

kd-kc+l principal-value square roots, it can be computed as a

single principal-value square root of a finite product of complex

first-order polynomials, provided that the location of the

product in the complex plane is tracked from & - 0; for example,

see [2; pages B-1 and B-2].

15/16
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COVARIANCE AND FILTER EXAMPLES

INPUT SIGNAL CHARACTERIZATION

The input signal covariance will be taken to be a sum of

damped exponentials:

J
R5 (r) = Z. a. exp(-l' /rtj) for all T , (33)

3=1 5)

where the J exponential parameters frsjJ are all distinct. The

scalings (ajJ and time constants (rsjJ can be complex, provided

that they occur in complex conjugate pairs; that is, input signal

covariance Rs(T) must be real for all r. The origin value,

Rs(0)) - aj U2 (34)

is the input power of stationary signal sequence s(kA) in (1) and

(3), prior to gating. The input signal spectrum corresponding

to (33) is, with w - 2nf,

Gs(f) - dr exp(-i2nfr) R - , (35)
S 1 1+ (W sj)

which is seen to contain 2J distinct poles in the complex

f-plane. Gs(f) can contain up to 2J-2 zeros.

For time sampling increment A, the sampled input signal

covariance is, from (33),

17
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J A
Rs(kM) ,-- a. exp(-a.lkl) ; a. - (36)

:J-s I J J tsj

The J exponential parameters {ajI are distinct, but they can be

complex; in fact, (ajJ and {ajJ can both be complex provided that

they occur in complex conjugate pairs such that Rs(k&) is real

for all k. In fact, some of the scalings (aj} can be negative,

provided that total spectrum Gs(f) in (35) is nonnegative for all

f. The exponential parameters |ajJ in (36) must also satisfy

Re aj > 0 in order that the covariance tend to zero it k - ±0.

For a particular pair of complex conjugate terms, say

aI -a 0 , 12 W a , sl To I s2 ' O ,t a1 - a0 , a 2 = a,

(37)

the corresponding part of the (continuous) input signal

covariance (33) can be expressed in the alternative form

R s(t) - ao exp(-IJrl/t ) + a exp(-ITI/To) -

" 2 exp(-wrIlI) [ar cos(wilrl) + ai sin(iwill)] , (38)

where we have defined the real and imaginary parts

1
a ar + iai , to " r + iWi " (39)

The sampled signal covariance for component (38) is

R0(kM) - 2 exp(-arJkl) [(r cos(ailkl) + ai sin(ailkl)] , (40)

18
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where ar - crA and ai =- wi.

The spectral component associated with component covariance

(38) is, by reference to (35) and (39),

2 a T 2 a* -r
G0 M0 0 -+ - 0 0G (f) = 2 +*2 =
S + (W To) 1 + (W to)

2 aO/T0  (ar + iai)(Wr + iwi)
- 2Re • + l/t0 = 4+Re . .... -

2+ 22 + (r + i.i)2

rr0 r + 2  +r c~2  ?c
aW 2+i + (W + ) i i (W2 + W? W

42 r Cr a(wr: ~ dr Cr 1 .(o .

+ (W W i) 2Cr + (w+ wi)2)

C a r W ri - i ) + - d r + 2i (r + - l C ri )

W 2 + (W -W i)2 W 2 + (W + -2
r rr) (41)

a i + ia r + ai - ia r +- a i + ia r +- a i - ir
+ i + iW r W + W i -iWr + - i+i - Wi iW r

If this spectral component G0 (f) goes negative for some ranges of

f, it must be accompanied by additional terms in summation (35)

to keep the total spectrum G s(f) nonnegative for all frequencies

f. Spectral coi onent (41) has four poles in the complex w-plane

at locations W = wi ± iwr and W = - Wi ± iCr -

Even if coefficients (ajI and JTsjj in (35) are purely real

and the poles are distinct, oscillatory behavior of spectrum

Gs(f) is still attainable. For example, with

J - 3, |aj| - 1, 8, 15, (al - 11, -48, 75, (42)

19
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the spectrum (35) is displayed versus wa in figure 6. Actually

plotted is the scaled spectrum

Gs(f) J c4 a
S2 + 2(

j-1 (WA) +aji

where we have used (36) to eliminate (rsj8 . The negative

coefficient for a2 causes the dip near wa 4.

I0

6

2A

01
0 1o 20 WA 30 40

Figure 6. Spectrum (43) for Parameters (42)
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INPUT NOISE CHARACTERIZATION

The presentation in this subsection exactly parallels that

above for the input signal. The input noise covariance is again

taken to be a sum of damped exponentials of the form

M
Rn (T) - L-- Am exp(-ITI/Trn} for all r , (44)

rn-1

where the M (complex) noise time constants T nmI are all distinct

from one another. (Some of them may equal some of the signal

time constants Irsj} in (33), if desired.) The origin value,

H 2 (

Rn(O) - = an (45)

is the input power of noise sequence n(kA) in (1).

For time sampling increment A, the sampled input noise

covariance is, from (44),

H14
Rn(kA) - Pm exp(-bmlkl) ; bm = (46)

m=i

The noise exponential parameters Ibmi are distinct, but they can

be complex; however, Re bm > 0. (Some of the IbmJ can equal some

of the (aj) in (36).) The special case of white noise,

R2 2 2Rn(kA) 0n 6 ko, is handled by choosing M = 1, A, - an, Tnl 0,

21
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FILTER CHARACTERIZATION

We first consider an analog filter with a rational transfer

function with N distinct poles, namely

N •
H(f) N- 1n (47)S= -- 1 + i2nfTh

n=1

where (rhnI are distinct (complex) time constants. H(f) can have

up to N-1 zeros. The corresponding impulse response is

-- exp( T fort 0

h(r) = t hn (48)

0 for T <0

which is required to be real for all r. The sampled impulse

response is then of the form

N
A h(mA) - = +n Cn exp(-cnm) for m k 0 cn - t h (49)n-1 ' hn

where the N filter exponential parameters fcnl are distinct from

one another; also, Re cn > 0.

The filter correlation function is available by substitution

of (49) in (10), with the result

N
+h(ja)= )- c vn exp(-CnIjI) for all j , (50)

n-i

where

n N +kck for 1 1 n S N. (51)
Vn = 1 - exp(-cn-ck)
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The form of filter correlation *h(jA) in (50) is identical to the

sampled input signal covariance (36), in that (50) is also

composed of N distinct exponentials; hence, the comments and

examples given there are relevant here also.

A useful alternative exists to the calculation of constants

|•n| via (51). Namely, define z transform filter

11(z) -= z-m A h(mA) . (52)
m-0

Replace n by k in (49) and substitute the result into (52);

then an interchange of summations yields

N *k Ck
H(z) - = 1 (53)

k=l 1 - i exp(-ck)

It then follows immediately by comparison with (51) that

-n - H(exp(Cn)) for 1 1 n I N . (54)

When H(z) is available as a rational function, (54) can be used

directly, instead of summation (51).

The exponential parameters Icn 1, in impulse response (49) and

corresponding N-pole filter (53), can be complex, provided that

they occur in complex conjugate pairs and that their

corresponding coefficients |+n} are also conjugate pairs. That

is, the sum of two conjugate terms of the form of (49) must be

real for all m X 0. This generality allows for oscillatory

impulse responses such as yielded by narrowband filters.
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FILTER OUTPUT NOISE COVARIANCE

In the sequel, we will find use for the following closed form

for the discrete convolution of two exponentials:

exp[-clkl] 0 exp[-blkl] a T exp(-cljI-blk-jI] =

Isinh(c)[exp(-blkl) - sinh(b) exp(-cjkj) for b P( c
cosh(c) - cosh(b)

= jlh . (55)

k+ sh(c) exp(-clkl) for b - c

The filter output noise covariance is given by (9). If we

define

C(kA) = j +h(JA) Rn(ka - jA) (56)

then the stationarity of filter output noise yn(kA) in (8) allows

us to express (9) as

Cn(k1 ,k2A) - C(k 1 a - k 2 A) . (57)

Therefore, we can concentrate on evaluation of C(kA) in (56) for

representative filter correlations +b and input noise covariances

Rn.

In particular, we will use the general filter correlation

(50) and input noise covariance (46), where we presume that none

of the filter parameters JCnI are equal to any of the input noise

parameters ibm). That is,
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Cn $ b for all nm . (58)

Substitution of (50) and (46) in (56) and use of (55) results in

N M
C(kA) + c n n n exp(-cnIji) ) am exp(-b mk-jj) -

)n-l n nr-1

N M
"= =- n Cn Vn Am exp[-Cnl J-bmlk-Jl]
n-l m-l J

M N
- PM exp(-bm1k]) + J-ý yn exp(-cnlkl) ' (59)
m-1 n-1

where we defined auxiliary constants

N 4n cvn n sinh(cn)

-m = cosh(cs h for 1 m c M ,

H Am sinh(bM)
Yn an Cn Vn L cosh(b ) - cosh(c for 1 5 n S N . (60)

rn-i r n

Condition (58) keeps all the denominators in (60) from becoming

zero. On the other hand, if one of the filter parameters {Cn is

equal to one of the noise parameters (bm 1, then it is merely

necessary to utilize instead the second line of (55) for that

particular n,m pair in the j sum in the middle line of (59).

End result (59) for the filter output noise covariance is a

compact expression that is capable of being quickly computed,

once constants (p and lynI have been evaluated by means of

(60) and stored. Again, we encounter a sum of decaying

exponentials, albeit of M + N terms now.
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FILTER OUTPUT NOISE COVARIANCE FOR WHITE NOISE INPUT

When the input noise is white, then as noted under (46), we

have for the input noise covariance,

R (kA) - a2 6 that is, M - 1 2 , b (611
n n 6 ko' Ii1~ n b4 (61

Use of this result in (60) yields p, 4 0, 2n • '• n Cn vn in

which case the filter output noise covariance (59) becomes

2 N
C(kA) - a n-ý 4n cn V n exp(-cnlkl) (62)

n-i

where vn ) are given by (51).

Actually, (62) is a special case of the general white noise

result obtained by substitution of (61) into (56); namely, for

arbitrary filter A h(mA), the filter output noise covariance is

C(kA) - h h(kA) for white noise input , (63)

where filter correlation *h is given by (10).
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FILTER OUTPUT SIGNAL COVARIANCE

The nonstationary filter output signal covariance is given by

double summation (17) in conjunction with (18). If we substitute

input signal covariance Rs(kA) given by (36), along with filter

impulse response A h(mA) given by (49), into (17), there follows

K1 N K2  N

Cs (k1,k 2A) -= = " n Cn exp1-cn(k1-m)J ) = = q Cxq ×
rn-k a n=1 pmk a 1 qnq

J

J N N
30 -' aj n +l n Cn expt-cnklJ L +q Cq exp(-cqk 2) x

Jal n-i ( n n) q=1

K1  K2

x = exp~cm ZZ_ exp (cq p - a iIm-pI) .(64)

m=k a pka

In order to evaluate the innermost double summation in (64),

we let A = exp(aj), B = exp(cq), C = exp(cn) and we presume that

k• 1 k 2 . It then follows from (18) that K1 1 K2 , and the double

sum in the last line of (64) can be developed thusly:

KI K

S(A,BC,ka,KIK 2 ) ) Cm C . BP A-{mp, - (65)
m=ka p=k a

K1  K2

= [ = BP Ap-m + = BP Am-p - -

m=ka a p=ka p A _
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K 1  1 K2 KI
_Z (C/A)m = (BA)P + 2 (CA) = (B/A)P - 1 (CB) (66)

m-ka p-ka m=ka P-m m-ka

Now we use the fact that

M = L zM+1

-z
•- -z1 - for z # 1 , L • H , (67)

m-L

and we define auxiliary function

k
g(z,k) F-- for z 0 1 . (68)

Then, after some amount of manipulation, the sums in (66) can be

expressed in the closed form

S(1~C~ 1K) g(Bk A2- CB + (BK+) B(A2 - 1)
S(AB'C'k a'K'K 2) a g(CB'ka) (A-B)(A-C) + g(CBK 1+1) (A-B)(1-BA)

+ g(B/A,K 2 +1) 1g(CA,K 1 +1) - g(CA,k 8 )J - g(BA,ka) g(C/A,K 1 +1) ,

(69)

provided that B 0 A and C # A. (B cannot equal 1/A, nor can C

equal 1/A or l/B, because the real parts of cn and aj are always

positive.)

We now employ definition (65) in order to express the filter

output signal covariance in (64) in the final form

J N N
C (k11 ~k 2 A) - -"I +n ~W Cn expIIc k) Lgui epc

x S(exp(aj),exp(cq),exp(cn),ka,K1 ,K 2 ) , (70)
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provided that none of the filter parameters (C nI are equal to any

of the input signal parameters faj). That is,

cn P a for all n,j . (71)

This result, (70), cannot be further reduced without the various

parameters being specified. The triple summation will not be

overly time consuming unless the input signal or filter are

characterized by a large number of poles, that is, large J or N.

The result in (70) holds for k1 : k2 ; the range for k, > k2

is most easily handled by use of symmetry relation (15). Also, a

significant computational aid is available by using the

recurrence relation for the g(z,k) function in (68), namely

g(z,k) - z g(z,k-1).

In summary, ka, kb, kc, kd are given integers satisfying

ka Ikb k c I kd, ka I kd. Also, K0 - max(ka,kc),

K1 - min(kl,kb), K2 - min(k 2 ,kb). Since we keep kI k 2 , then

K1 S K2* Integers kI1 and k 2 must vary over the range

K 0 kI1 1 k2 1 k d , (72)

meaning that K1 varies in the range min(K ,kb) to min(kd kb).
From (69), we see that we have to compute function values

g(CB,ka), g(CA, ka), g(BA,k a), as well as the arrays of function

values of g(CB,k), g(CA,k), g(B/Ak), g(C/A,k) for k in the range

min(Ko,k b)+l to min(k d,kb)+l.
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PROGRAMS

A program listing for the white noise input case is presented

in appendix D; it consists of two separate parts. The first part

computes the filter output signal and noise covariance matrices

for unity input signal and noise powers, the total filter output

covariance matrix of elements Cy in (23) for the various signal-

to-noise ratios of interest, the weighted covariance matrix C of

elements Ca in (26) and its corresponding eigenvalue matrix A in

(27). The output of these eigenvalues to storage completes the

first part.

The second part lists the program that takes in these

eigenvalues and computes the exceedance distribution functions,

for noise-alone as well as for signal present, from

characteristic function (32); these are the false alarm and

detection probabilities, respectively. The precise method of

handling all the widely different signal-to-noise ratios of

interest is presented in the next section. At the end of

appendix D, there is also a listing of the simulation program

utilized to verify these theoretical derivations and results.

The corresponding program for the colored noise case is

listed in appendix E. A similar breakdown into two parts has

been adopted; however, once the eigenvalues have been computed at

the end of the first part, the identical program in part 2 of

appendix D is used for distribution calculations and is therefore

not listed again. Also, the simulation program use to check the

colored noise case is similar to that in part 3 of appendix D.
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ON CALCULATION OF RECEIVER OPERATING CHARACTERISTICS

The evaluation of the receiver operating characteristics for

a number of different input signaJ-to-noise ratios typically

involves the Fourier transforms of a set -c characteristic

functions of the decision variable, which frequently have widely

different ranges and rates of variation. In order to make these

calculations tractable and easily plotted, it is necessary to

resort to FFTs [2] with carefully chosen sizes and sampling

increments. We now present the reasoning behind our choices of

these parameters and their interrelationships.

For ease of presentation, we will consider the numerical

evaluation of a probability density function p0 (u) from a given

(noise-only) characteristic function f 0 (E); the extension to an

exceedance distribution function [2] is immediate. We have

P o (u) - - d& exp(-i~u) fo(&) -

a1- & exp(-ikaoU) fo(kAo) s po(u) , (73)k

where the trapezoidal approximation with sampling increment Ao

in & has been employed. The approximation P0(u) defined by (73)

is an aliased version of p0 (u) and has period u0 - 2n/A0 in u.

In order to keep aliasing effects negligible in o0 (u), it will be

necessary to choose & increment a small enough that the aliasing

lobes at separation u0 don't overlap. Therefore, we can restrict

the evaluation of 00 (u) to No equally spaced points over that

interval uO, according to
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(2xn '

N A J 2-A A. T exp(-i2nkn/No) f (kAo) for 0 1 n I No-1
N n k 0 0 0

(74)

Furthermore, by collapsing the sequence [fo(kAo0 ) modulo No,

(74) can be accomplished exactly and efficiently as an No-point

FFT when No is a power of 2; see (2]. The increment in argument

u of rpo(u) in (74) and the maximum useful value of u are

21r 2jr

6 N- 2n U (75)
0 0NA 0 6

Now suppose that we also want to evaluate the probability

density function pl(u) corresponding to a different (signal

present) characteristic function fl(&) according to

P l (u) = J d& exp(-i~u) fl(Q)

2n- 41 Ek exp(-ik~l u) fl(kAl) a Pl(U} (76)

k

where the sampling increment in & is now a1. By identical

reasoning to that above, we can get samples of periodic

(aliased) approximation fl(u) according to

(2nn _ 1 •
1, NiAl J ] -A 1: exp(-i2nkn/N1 ) fl(kAj) for 0 1 n I NI-I

(77)

which can be realized as an Nl-point FFT. The increment in u and

the maximum useful value of u for this latter case are

2n 2n (78N1 - , u A .a1
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If we now want to eliminate the arguments of functions Po(U)

and 1 (u) and be able to directly plot Pl(u) versus Ao(u) (that

is, y versus x), this can be easily accomplished if we force the

u increments in (74) and (77) to be equal, namely, 6i -M60 But,

then, according to (75) and (78), this means choosing

Nl1 - NO0 . (79)

Since integers NO and N1 will be limited to powers of 2, this

will mean repeated halving of the & increments 60 and Al in (73)

and (76), respectively. The values of 01 yielded by (77) can

then be directly plotted versus those values of fo yielded by

(74), up to n - min(No,N1 ) - No.

There are several alternative procedures that could have been

adopted. For example, one option is to halve the & increment,

that is, take Al= Mo/2, but keep N1 = N0 . This will require

discarding every other value put out by FFT (74), in order that

the remaining values occur at the same u arguments yielded by

(77). This is wasteful of FFT (74) and has not been adopted

here. Nor have we employed the possibility of interpolation of

(77) to determine approximately what the values of A, would be at

the arguments of fo in (74).

The need to decrease the size of the t increment from A in

(74) to A1 in (77) is fundamental. It arises from the fact that

as the input signal-to-noise ratio is increased, the contribution

of the corresponding probability density function Pk(u),

k - 0,1,2,..., moves to higher values on the u scale (thereby

33



TR 8913

leading to the desired higher detection probabilities). In order

that approximation Dk(u) not be severely aliased, the & increment

ak must therefore be decreased; for example, see upper limits uo

and u1 in (75) and (78), respectively.

With these points in mind, the following procedure has been

adopted and utilized in the programs in this report. First, for

the noise-only probability density function p 0 (u), a satisfactory

value for t-increment Ao in (73) is found such that aliasing is

insignificant in P0 (u). This selection of O is arrived at by

looking at a plot of (74) and modifying Ao0 appropriately by trial

and error. An FFT size of N - 128 is utilized to evaluate (74),

which is then stored; this size for N has generally proven to be

sufficient to keep track of the variations of p0 (u).

When we encounter the characteristic function f,(E) and

probability density function p1 (u) for the first (lowest) nonzero

signal-to-noise ratio of interest, it is usually necessary to

decrease the & increment to A1 - A0 /2 or Ao/ 4 in order to control

the aliasing inherent in approximation p1 (u). At the same time,

N1 is scaled up by 2 or 4, according to (79), thereby maintaining

the same u arguments for (74) and (77), as desired. Again, a

plot of aliased version 1 (u), obtained by means of (77), serves

as the decision point for making an acceptable choice of value

for A1 .

For the successively larger signal-to-noise ratios and their

corresponding probability density functions Pk(u), k-1,2,...,

occasional repeated halvings of the & increment according to
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ak "k-1/ 2 are made, but only when needed to keep aliasing

insignificant in Dk(u). At those times that such a halving

is necessary and made, the FFT size is doubled according to

Nk - 2 Nkl. Otherwise, ak and Nk are kept at their same

values as used for the k-i run. By the time the largest

signal-to-noise ratio case of interest is reached, the FFT size

Nk can get rather large. We are limited in our application to a

maximum FFT size of 16384; if aliasing is significant at this

size, we are unable to accurately numerically handle these larger

signal-to-noise ratios by the adopted procedure. Interpolation

would then be the recommended alternative, as alluded to above.

The procedure above has been expla-ned in terms of

probability density functions rather than the exceedance

distribution functions which are of actual interest. That is,

the relevant exceedance distribution functions are plots of the

detection probabilities for various signal-to-noise ratios versus

the false alarm probability. The only basic change is to replace

the top lines of (73) and (76) by the exceedance distributions,

which are also obtained by means of Fourier transforms, namely

[2; (5) - (6)]

+QD

E-k(u) -21 +a & Im -i'u) (80)

0+

for k - 0,1,2,...
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RESULTS

COMPARISON WITH SIMULATION

In figure 7, the cumulative (CDF) and exceedance distribution

functions (EDF) for a white noise input excitation are presented.

The input signal and filter are both characterized by one pole,

that is, J - 1 in (33) - (36) and N - 1 in (47) - (50). The

simulation employed 1E6 trials and verifies the theoretical

calculations down to the probability level of 1E-5 plotted. A

listing of the simulation program, including all the parameter

values that were utilized here, is given at the end of appendix

D. The gating and observation parameters are ka - 4, kb - 11 and

kc = 2, kd - 16, respectively; thus, it can be seen that the

transient buildup and decay are a prominent part of the filter

output signal for this particular example.

The results in figure 8 pertain to a colored noise input with

one pole, that is, M - 1 in (44) - (46). Again, 1E6 trials were

used in the simulation and they confirm the theoretical result

down to the 1E-5 level of probabilities. A listing of the

simulation program is given at the end of appendix D.

Absolute time is unimportant to the performance of the energy

detector in figure 1. That is, any common constant can be added

to or subtracted from ka, kb, kc, kd, without changing the

receiver operating characteristics. Thus, ka could always be

selected as 0 without loss of generality.
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Epp
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Figure 7. Cumulative and Exceedance Distributions for White Noise

E-2

- 5 0 215b 200

Figure 8. Cumulative & Exceedance Distributions for Colored Noise
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RECEIVER OPERATING CHARACTERISTICS

The receiver operating characteristics, that is, detection

probability PD versus false alarm probability PF for a set of

signal-to-noise ratios, for the system in figure 1 will be

considered in this section. The first example is evaluated for

the following set of parameters, where all times are in seconds.

Also, all parameters are real.

ka =4, kb = 11, kc = 2, kd = 16, A - .2,
J = 3, {aj) = IlI -48 75), {Tsj* = (1 1/8 1/151,

M = 2, I§m1 = 139 60), ITrmI = 1.2 .4),

N = 4, = 1 2 3 4), IThn} = 1.3 .5 .7 .9). (81)

Twenty nonzero values of the system input signal-to-noise ratio

2

R = -CF(82)
CFn

were utilized, namely R = 5(1.2)27.8 dB. For computation of the

exceedance distribution function P F directly from the

characteristic function, the initial E increment A 0 in (73) and

(74) was taken as .00025; this yielded round-off errors less than

IE-15 in the false alarm probability calculation. Repeated

occasional halving of the E increment, as explained in the

previous section, was utilized, eventua1 .ly requiring an FFT size

of 16384 for the largest signal-to-noise ratios cases for PD"

The receiver operating characteristics are plotted on normal

probability paper in figure 9 and cover a wide range of values,
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ranging from 1E-10 for PF to .999 for PD" Since Gaussian random

variables would plot on such paper as a set of parallel straight

lines, the curvatures of these results illustrate that the

Gaussian assumption for decision variable z in figure 1 is not

warranted, at least for this example. The major reason for this

behavior is the relatively small number of samples used in the

detector; see the top line of (81). This is also a partial

explanation for the rather large values of the per-sample

signal-to-noise ratio R required at the high quality region at

the top left of figure 9. Another factor to notice is that the

input signal duration is only kba - kaA - 1.4 seconds, meaning

that the filter output signal never reaches steady state before

the input signal is turned off; all these transient signal

effects and their limitations on performance have been included

exactly in the analysis and numerical results presented here.

The effect of halving the sampling increment a in figure 1 is

considered in the next example but done in such a manner as to

keep the total input signal duration the same. That is, the

parameter values in (81) are kept the same except for the

following changes:

ka - 8, kb - 22, kc - 4, kd - 32, A - .1. (83)

Notice that all absolute times, such as ka , are kept fixed. The

corresponding receiver operating characteristics are plotted in

figure 10. Performance has been degraded by a couple of dB. For

example, to realize PF - 1E-3 and PD - .5, the per-sample input
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signal-to-noise ratio R must now be 16 dB, whereas it was 13.8 dB

in the previous figure. This is a degradation of 2.2 dB. The

main reason for this behavior is again the inability of the

filter output signal to reach steady state and thereby contribute

significantly to the summer output. By contrast, the filter

output noise is in steady state (by asbumption) for both

examples.

We now return to the original sampling increment A - .2

seconds employed in (81). When the observation interval

coincides with the input signal nonzero-excitation duration, that

is, ka - kc - 4, kb - kd - 11, the receiver operating

characteristics in figure 11 illustrate additional improvement.

For example, probabilities PF = 1E-3 and PD " .5 can now be

realized with R - 13.1 dB, which is an improvement of .7 dB

relative to the signal-to-noise ratio required for the broader

observation interval, kc = 2, kd - 16, used in (81).

Finally, an example with a wide observation interval, namely

kc = 0, kd - 25, is displayed in figure 12. The desired

probabilities can now be achieved only if the input signal-to-

noise ratio is increased to 14.7 dB, a degradation of 1.6 dB

relative to the best case above.

These examples illustrate the utility of being able to

investigate quantitatively and accurately the effects of

nonstationarity in a system, without having to make questionable

assumptions about, for example, how closely steady state was or

was not realized. They also afford a dependable verification or
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rejection of the Gaussian approximation for the decision

variable; in a related work [3], the latter approximation was

found to be too optimistic for most working ranges of this

detection system.
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SUMMARY

Programs have been written which enable exact analysis of

performance of the mismatched bandpass energy detector of figure

1, both for the white noise input case as well as the colored

noise input case. These results allow for arbitrary sampling

time increment A and for arbitrary input signal spectra, input

noise spectra, and filter transfer functions. By these means,

exact quantitative evaluations and degradations can be determined

for various combinations of uncertainty regarding the input

signal time location and duration as well as its center

frequency, bandwidth, and spectrum. Included in the analysis and

programs are the buildup and decay (or any portion thereof) of

the nonstationary output signal from the filter, when excited by

a burst-like input signal, regardless of the lengths or locations

of the excitation and observation intervals. Both programs have

been compared with simulation results and confirmed down to as

low a probability level as possible consistent with the number of

trials used.
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APPENDIX A. NUMERICAL EVALUATION OF NOISE COVARIANCE Rn

If the noise covariance Rn(t) is not available in analytic

form, but the noise spectrum Gn(f) is specified, the following

numerical procedure can be employed to evaluate the required

samples Rn(kA). We begin with

R n(} - f df exp(i2nft) G n(f)

& f exp(i2nmAfT) Gn(mAf) * An(r) , (A-1)

where the trapezoidal rule with frequency increment Af was used.

But Rn(t) in (A-i) can be developed as

R n(r)- J df exp(i2nft) Gn(f) f & f(f) -

"=Rn(T) 611A (T) = X1 Rn(T - I) - (A-2)
nf mf

Now suppose that the noise covariance

Rn(T) Q 0 for ItI > T . (A-3)

Then, in order to avoid significant aliasing in (A-2), we must

take &f small enough that

1 >O T (A-4)

in which case (A-2) yields

Rn(t) • Rn(T) for ITI < To< - (A-5)
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The required samples of Rn (T) follow from (A-i) according to

Rn (ka) - f Z: exp(i2nmA fkA) G n(mAf) . (A-6)

m

Now take frequency increment

b -- 1 (A-7)

where, according to (A-4), integer N must be taken large enough

that NA/2 > to, that is,

2ro

N > -2- (A-8)

Then, from (A-5) - (A-7),

Rn(kh) Q FRn(kA) - E exp(i2nmk/N) Gn for IkI < N (A-9)
m

Alternatively, this can be expressed as

R (kA) (kb) _1 N-i1i)<Rn kA) R (kA) Ra-••- N -exp(i2nmk/N) for IkI < ,(A-10)
m=O

where collapsed (prealiaspd) noise spectrum and sequence

Gn(f) G Gnf G f( , n = Gn(- ) for 0 m I N-1

(A-1I)

The procedure in (A-10) can be efficiently realized as an N-point

FFT of N nonzero numbers. The major conditions that must be met

are (A-8) in conjunction with (A-3).

50



TR 8913

APPENDIX B. NUMERICAL EVALUATION OF FILTER CORRELATION +h

Suppose that we want digital filter cucrelation

+h(jA) - A2 F h(mA) h(mA - jA) , (B-1)

Oefined in (10), but all that we have is the filter transfer

function H(f), where

h(r) - f df exp(i2nfr) H(f) for all T . (B-2)

Impulse response h(T) is presumed real. The direct relationship

between +h(jA) and H(f) is the subject of this appendix.

First, define periodic function

H(f) H f for all f (B-3)
m

Then, there follows

R(f) - H(f) 0 6 1/A•f) -f

f dr exp(-i2nfr) h(r) A 6 A(r) - T exp(-i2nfAm) A h(mt) , (B-4)

where we used the fact that convolution in the frequency domain

is equivalent to Fourier transformation of a product in the time

domain. That is, H(f) is the Fourier transform of the samples of

impulse response h(T) taken at time increment A. However, care

must be taken at points of discontinuity of h(t); for example, if

h(r) is discontinuous at kA, the contribution to the right-hand
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1
side of (B-4), at m - k, is j[h(kA+) + h(kA-)]. This point and

an example are discussed more fully in appendix C.

Now, there follows from (B-i) and (B-2),

h(ja) W- 62 Y f df exp(i2nfAm) H(f) j du exp[-i2rua(m-j)] H*(u)-

"i fj df du H(f) H'(u) exp(i2xuAj) A E exp[i2r(f - u)Am] -

'a if df du H(f) H*(U) exp(i2nuAj) 1: 6 f - u-•
m

- A • J df H(f) H*(f - 2) exp i2n(f - •1)jA
m M) I

-A Jdf exp(i2nf~j) H(f) E H*4f -

-A f df exp(i2nf~j) H(f) H*(f) , (B-5)

where we used (B-3).

Now, let In denote the following interval of length 1/A on

the f axis:

In-½n+ .(B-6)

Then, the filter correlation +h follows from (B-5) according to

*h(ja) - a E f df exp(i2nfAj) H(f) H*(f) -
n I

n
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-A f du exp i2ir u + n)i ~ )H(
n i0

f du exp(i2nu~j) H* (u) T Hu+

10 n

.5/A

A f du exp(i2nu4j) IH(u)l 2  (B-7i

-. 5/A

where we let u - f - n/A and used (B-3) and the periodicity of

H(f). This result indicates that we must first alias the given

transfer function H(f) according to (B-3) and then Fourier

transform its magnitude-square over an interval of length 1/&.

An alternative approach that leads to the same result (B-7)

is to use (B-2) and (R-3) in the form

h(mA) - J df exp(i2nfAm) H(f) f df exp(i2nfAm) H(f) (B-8)

1 0

Use of this latter result in (B-I) leads to filter correlation

+h(JA) E A2  m df exp(i2nf~m) H(f) fdu exp[-i2nuA(m-j)] H*(u)-

"-� Af df du exp(i2nuAj) H(f) S*(u) A Ej exp[i2n(f - u)Am] -

1 0 Dl

" A if df du exp(i2nuaj) H(f) H*(u) f - u6- a
i m

0
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- f J df exp(i2nfAj) IH(f)l 2 I (B-9)
Io

since only one impulse, at u - f, lies in interval Io. Result

(B-9) is identical to (B-7). Notice that we do not get

A J df exp(i2nfAj) IH(f) 12 - a j df exp(i2nfaj) E IH(f + n1 2

0 (B-10)

As for the actual numerical evaluation of (B-9), suppose we

sample the integral on f with increment a f - 1/(KA) and use the

trapezoidal approximation; then there follows

K/12 ex UNk R k1
#h(j') Q K1 = , wk expKi2njj lAl-/'

k--K/2

where weights {wkI are given by

Wk I {t for Ikl - K/2(

for Iki < K/2-

By using the periodicity K of the exp and H terms in (B-11), that

sum may be written exactly in the standard FFT form

+h(ft 1 K-i 1_-'k)1 2  K (-3
= exp(i2jk/K)jl < I (f-13)

This is a good approximation, provided that the FFT size K

satisfies K > 2rh//a, where rh is the effective duration of filter

correlation +h(T).
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APPENDIX C. DISPLACED SAMPLING AND
FOURIER TRANSFORM OF DISCONTINUOUS FUNCTION

GENERAL RELATIONS

Let a(t) and A(f) be a Fourier transform pair:

A(f) - f dt exp(-i2nft) a(t) . (C-1)

Also, let b(t) and B(f) be a Fourier transform pair. Then,

Parseval's theorem states that

f dt a(t) b*(t) - f df A(f) B*(f) . (C-2)

We now apply this relation to the case where

b(t) - A 6A(t - a) , B(f) - 6 1/,(f) exp(-i2nfu) . (C-3)

There follows

L a 8 : a(nA + a) - [ dt a(t) A 6A(t - a) (C-4)
n

fdf A(f) 6 1,,,(f) exp(i2nfca) - A(!!) exp(i2Jncz/ft) a R .(C-5)

n

If the samples required in the sums in (C-4) and (C-5) encounter

a discontinuity of a(t) or A(f), the value used in (C-4) or (C-5)

must be taken as the average value approached from both sides of

the discontinuity. Also, the sums in (C-4) and (C-5) may have to

be interpreted as principal value, if necessary for convergence.
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EXAMPLE

{exp[-(b+ic)t] for t > 0
a(t) , b > 0 . (C-6)

0 for t <0)

1
A(f) - b + i(c + 2nf) for all f . (C-7)

Function a(t) is discontinuous at t - 0, while A(f) is continuous

for all f.

Let 0 < a < A; then the sum in (C-4) is

LO A expr-a(b+ic)]
L - A•= exp1-(b+ic)(nA+a}] - 1 - exp[-A(b+ic)] for 0 < a < An=0

(C-8)

At the same time, the sum in (C-5) is

R = E exp(i2nna/A) for all a • (C-9)
n b + i(c + 2un/A)

When a # 0 (or an integer multiple of A), the phase factor in the

numerator of (C-9) yields a convergent sum for the real and

imaginary parts, without the need for a principal value

interpretation. It has also been verified numerically that (C-8)

and (C-9) are equal, as predicted by (C-4) and (C-5); that is,

exp(i2nna/A) A exvf-a(b+ic) for 0 < a < A . (C-10)
n b + i(c + 2nn/A) 1 - exp[-A(b+ic)] f
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On the other hand, if a - 0, then the sum in (C-4) is,

accounting for the discontinuity of a(t),

Go A 1 + exp[-A(b+ic)]
2 n- " 2 1 - exp[-A(b+ic)] " (C-il)

Also, then, the sum in (C-5) is

1 b - i(c + 2irn/a)
- b + i(c + 2nn/A) L b2 2 (c + 2nn/A)2 (C-12)

nn b + (c + 2nn/A)2 (-)

the imaginary part of which must be interpreted as a principal

value sum. Again, it has been numerically verified (next page)

that (C-11) and (C-12) are equal; that is,

1 A 1 + expr-A(b+ic)] (C-13)

b + i(c + 2n/) 2 1 - exp[-A(b+ic)] "n

Notice that the limit of (C-10) as a 4 0+ does not yield (C-13).

If we apply result (C-11) to H(f) in the last entry in (B-4),

we have, for example (304),

j(f) a 1 + exp(-a-i2nfA) (C-14)

"2 1 - exp(-a-i2nfA) C

By contrast, the limit of (C-10) as a 4 0+ yields

a (C-15)
1 - exp(-a-i2nf&) "
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BASIC PROGRAM FOR NUMERICAL VERIFICATION

18 Bs=.57 I b
28 Cs=.71 1 c
30 De=.93 I delta
48 Al=.I I alpha
58 PRINT Bs,CspDeRA
68 CALL Exp(-AI*Bs,-RI*Cs,Nr,Ni)
78 CALL Exp(-De*Bs,-De*CsEr,Ei)
88 CALL Div(De*NrDe*Hitl-Er,-EiLrLi)
98 IF AI=0. THEN Lr=Lr-.5*De

108 PRINT LrLi I LEFT-HAND SIDE L
118 A=2*PI/De
128 B=R*Rl
138 B2=B$*Bs
148 Rr=Ri=8.
158 DOUBLE Ns I INTEGER
168 FOR Ns=-IE5 TO IE5 I PRINCIPAL VALUE SUIM
178 T=B*Hs
188 C=COS(T)
198 S=SIH(T)
280 T-Cs+R*Ns
218 D=B2+T*T
228 Dr=(C*Bs+S*T)/D
238 Div(S*Bs-C*T)/D
248 Rr=Rr+Dr
258 Ri=Ri+Di
268 NEXT Ns
278 PRINT Rr,Ri I RIGHT-HAND SIDE R
288 EHD
298 !
388 SUB Div(XI,YI,X2,Y2,U,V) I ZI/Z2
318 TwX2*X2+Y2*Y2
328 U=(XI*X2+YI*Y2)/T
338 V=(YI*X2-XI*Y2)/T
348 SUBEND
358 1
368 SUB Exp(X,Y,U,V) I EXP(Z)
370 E=EXP(X)
380 U=E*COS(Y)
398 V=E*SIH(Y)
408 SUBEND

.57 .71 .93 0

.729357897734 -. 88564844434

.729357647983 -. 885648755434

.57 .71 .93 .001
1.19318532814 -. 886828668889
1.19353711385 -. 886828668887

.57 .71 .93 .1
1.07135515262 -. 839119622889
1.87135537888 -. 839119622893
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APPENDIX D. PROGRAMS FOR WHITE INPUT NOISE

Three BASIC programs are listed in this appendix. All the

signal, noise, and filter parameters are restricted to be real

here. The first program computes the filter output signal and

noise covariance matrices for a white noise input, the sums of

these matrices scaled by the various signal-to-noise ratios and

then weighted, and the eigenvalues which are then stored. The

particular subroutine listed here, SUB Svd, actually computes the

eigenvectors in addition; a faster alternative would be to

replace this subroutine by one which calculates only the

eigenvalues. Twenty different nonzero values of the input

signal-to-noise ratio are allowed in the program and must be

chosen and input by the user.

These eigenvalues serve as the input to the second program

which computes the cumulative and exceedance distribution

functions according to the method given in (2] and then plots

the receiver operating characteristics by elimination of the

threshold variable according to the method described in

(73) - (80) in the main text.

The third program is the simulation program used to check the

two programs above. It is written for single-pole processes and

allows for a colored input noise process but could be easily

modified to handle more general processes. A run of 1E6 trials

took 7 hours on the Hewlett-Packard 9000 computer.
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18 I COMPUTE COVARIANCE MATRICES AND EIGENVALUES FOR WHITE
28 1 NOISE INPUT; STORE EIGENVALUES IN "EIG" IN LINE 1720
38 Ka=-1l I INPUT SIGNAL STAPT
40 Kb=5 I INPUT SIGNAL END; Kb >= Ka
58 Kc=O I ACCUMULATOR START
68 Kd=5 I ACCUMULATOR END; Kd >= Kc,Ka
70 Delta=.2 1 TIME SAMPLING INCREMENT (SECONDS)
88 J=3 1 NUMBER OF SIGNAL COMPONENTS
90 DATA 11.,-48.975. 1 SIGNAL SCALINGS (WE SET SUM = 1)

180 DATA 1.,.125,.066667 1 SIGNAL TIME CONSTANTS (SECONDS)
118 N=4 N NUMBER OF FILTER COMPONENTS
128 DATA 1.,2.,3.l4. FILTER SCALINGS (ARBITRARY)
138 DATA .3,.5,.7,.9 1 FILTER TIME CONSTANTS (SECONDS)
140 Nr=20 I NUMBER OF SIGNRL-TO-NOISE RATIOS
158 DATA ,19,2,3,4,5j6p7,8,9,18 1 INPUT SNRS IN DB
168 DATA 11,12,13,14,15,16,17,18,19
178 IF (Ka<=Kb) AND (Kc<=Kd) AND (Ka<=Kd) THEN 280
188 PRINT "PROBLEM WITH PARAMETERS"
198 STOP
288 DIM RApha(10),R(18),Ps5(18),C(10),R(20),W(100)
218 DIM Pc(I),Ec(1I),Pcv(18),Cn(200),Ea(18),E(0, 1880)
228 DIM Gca(188),Gcda(108),Gcb(180),Gbda(180),Cs(5008>
238 DIM Cw(8,18880),Ca(0,1000),D(100),Eig(8,2808)
248 DOUBLE KapKb,Kc,KdJ,NNrHs,KsKdc,Ko ! INTEGERS
258 DOUBLE L1,L2,LL11,JsQs,KiKs1,K1,Ks2,K2,I
268 REDIM Rlpha(l:J)AR(l:J)
270 READ Rlpha(*),R(*)
288 MAT Rlpha=Rlpha/(SUM(Alpha))
298 MAT R=(Delta)/R
388 REDIM Psi(1IN),C(I:N)
318 READ Psi(*),C(*)
328 MAT C=(Delta)/C
338 REDIM R(IHNr)
348 READ R(*)
358 REDIN W(KciKd)
368 CALL Weights(KcKd,W(*))
370 MAT W=SQR(W)
380 REDIM Pc(I:N),Ec(I:N) 1 FILTER OUTPUT NOISE COVARIANCE
398 FOR Nsal TO N
488 C=C(Ns)
418 Pc(Ns)-Pst(Ns)*C
428 Ec(Ns)=EXP(-C)
438 NEXT Ns
448 REDIM Pcv(lgN)
458 FOR Nsml TO H
468 E-Ec(Ns)
478 Sao.
488 FOR Ks=1 TO N
498 S=S+Pc(Ks)/(1.-E*Ec(Ks))
588 NEXT Ks
510 Pcv(Ns)=Pc(Ns)*S
528 NEXT Ns
538 Kdc-Kd-Kc
548 REDIM Cn(8:Kdc)
558 MAT Cn=(8.)
568 FOR Nsal TO N
578 Pcv=Pcv(Ns)
588 E=Ec(Ns)
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598 Put.
608 Cn(O)=Cn(O)+Pcu
618 FOR Ksal TO Kdc
620 P=P*E
638 Cn(Ks)-Cn(Ks)+Pcv*P
640 NEXT Ks
650 NEXT Ns
666a FOR Js=1 TO J 1 FILTER OUTPUT SIGNAL COVARIANCE
670 H(Js)-EXP(A(Js))
680 NEXT Js
698 Ko-MAX(Ka,Kc)
780 REDIM Ea(1:N),E(1:NvKoiKd)
710 FOR Nz-I TO N
728 E=Ec(Ns)
730 Ea(Ns)=In./E
740 E(NsgKo)=EXP(-C(Ns)*Ko)
750 FOR Ks=Ko+1 TO Kd
768 (sK)EHsl*
778 NEXT Ks
7818 NEXT Ns
790 L1=MIN(KotKb)+1
see L2=MIN(Kd,Kb)41
818 REDIM Cca(LI aL2),Gcda(L1:L2),Gcb(LIsL2),Gbda(L1:L2)
828 L=Kd-Ko+1
838 REDIM Cs(1:L*(L+1)/2)
8418 LI11Ll+1
858 FOR Js.1 TO J
868 81-Alpha(Js)
878 AMR(Js)

898 FOR Ns=1 TO N
908 C=Ea(Hs)
918 Ca-C*R
928 Cda=C/A
938 Calul.-Ca
948 Rc-A-C
958 Rt-AI*Pc(Ns)
968 Gca=Ca-Ka/Cal
978 Gca(L1)=CaAL1/Cal
988 Gcda(L1)-CdaA*L1/(1.,-Cda)
998 FOR Ks=L11 TO L2

t888 Gca(Ki)-C&*Gca(Ks-1)
181e Gcda(Ks)-Cda*Gcda(Ks-1)
1828 NEXT Ks
1038 FOR Osu1 TO N
1048 D=Ea(Qs)
1058 Roe-Re*Pc(Os)
1060 B&uD*A
1878 Bda=B/R
1080 Cb=C*B
109e Data1.-Ba
1188 Cbtnl.-Cb
1118 GbawBaAKa/Bal
11208 RbR-A-
1138 FuB*A1/(Ab*Bal)
1148 SI=Cb'-Ka/Cbl*(R1+Cbl)/(Ab*Rc)
1158 Gcb(L1)-Cb-LI/Cbl
1168 Gbda(L1)=Bda^Ll/(1.-Bda)
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1178 FOR Ks=L11 TO L2
1188 Gcb(Ks)=Cb*Gcb(Ks-1)
1198 Gbda(Ks)=Bda*Gbda(Ks-1)
1208 NEXT Ks
1218 Ki=O
1228 FOR Ksl=Ko TO Kd
1238 KI=MIN(Ksl,Kb)+I
1240 S2=SI+Gcb(KI)*F-Gba*Gcda(KI)
1258 S3=Gca(K1)-Gca
1268 E=Ree*E(NsK$1)
1278 FOR Ks2=Ksl TO Kd
1288 Ki-KI+I
1298 K2=MIN(Ks2,Kb)+I
1308 S=S2+Gbda(K2)*S3 i SUM S
1318 Cs(Ki)=Cs(Ki)+E*E(QsKs2)*S
1328 NEXT Ks2
1338 NEXT Ksl
1348 NEXT Gs
1350 NEXT Ns
1360 NEXT Js
1378 L=Kd-Kc+I I TOTAL WEIGHTED COVARIANCE MATRIX
1388 REDIM Cw(I:L,1:L),Ca(I:L,I:L),D(I:L),Eig(<:Nr,I:L)
1398 LI1=Kc-1
1488 R=6.
1418 FOR 1=8 TO Nr
1428 Ki=8
1438 IF I=8 THEN 1450
1448 R=18.^(R(I)*.1) I INPUT POWER SIGNAL-TO-NOISE RATIO
1458 FOR Ksl=Kc TO Kd
1468 W=W(Ksl) I WEIGHTS (w(k))
1478 FOR Ks2=Ks1 TO Kd
1488 IF Ksl>=Ko THEN 1518
1490 CS8.
1588 GOTO 1538
1518 Ki=Ki+I
1528 Cs=Cs(Ki)
1538 Pr=W*W(Ks2)*(Cn(Ks2-Ksl)+R*Cs)
1548 L1=Ks1-LI1
1558 L2=Ks2-LI1
1568 Cw(LIL2)=Cu(L2,L1)aPr
1578 NEXT Ks2
1588 NEXT Ksl
1598 CRLL Svd(L,L,Cw(*),Ca(*),D(*)) I EIGENVALUES
1608 MAT SORT D(*) DES
1618 IF D(L)>8. THEN 1648
1628 PRINT "PROBLEM: SOME NON-POSITIVE EIGENVALUES"
1630 PRUSE
1648 PRINT "I ="11;" CONDITION NUMBER =";D(1)/D(L)
1650 PRINT D(*)
1668 PRINT
1670 FOR Ks=i TO L
1688 Eig(I,Ks)=D(Ks) I STORE EIGENVALUES
1698 NEXT Ks
1708 NEXT I
1710 MASS STORAGE IS ":CS8N,7"
1720 ASSIGN #1 TO "EIG"
1738 PRINT #liNr,KcKd,Eig(*)
1748 ASSIGN #1 TO *
1758 END
1760 !
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1770 SUB Weights(DOUBLE Kc,Kd,REAL W(*))
1788 DOUBLE Ks I INTEGER
1790 F=I. 1 DECAY FRCTOR (DIMENSIONLESS)
1888 W(Kd)=I.
181t FOR Ks=Kd-1 TO Kc STEP -1
1820 W(Ks)=W(Ks+I)*F 1 EXPONENTIAL WEIGHTS
1838 NEXT Ks
1848 SUBEND
1858 I
1860 SUB Svd(DOUBLE M,N,REAL A(*),V(*),W(*))
1878 ALLOCATE Rvl(I:N) I NUMERICAL RECIPES, PAGES 60-64
1888 IF M>=N THEN 1910 1 A(*) IS OVER-WRITTEN
1898 PRINT "M<N IS DISALLOWED"
1900 PAUSE
1918 DOUBLE I,J,K,LItsNmJj I INTEGERS (NOT DOUBLE PRECISION)
1928 G=Scale=Anorm=8.
1938 FOR 1=1 TO N
1948 L=I+I
1950 Rvl(1)=Scale*G
1968 G=S=Scale=8.
1970 IF l>N THEN 2258
1980 FOR K=I TO M
1998 Scale=Scale+ABSA((K,I))
2808 NEXT K
2818 IF Scale=8. THEN 2258
2820 FOR K=I TO M
2838 Ra=R(K,I)=R(KI)/Scale
2040 8=S+Ra*Aa
2858 NEXT K
2860 F=A(II)
2878 G-SQR(S)
2080 IF F<8. THEN G=-G
2090 H=F*G-S
2108 A(II)=F-G
2110 IF I=H THEN 2220
2128 FOR J=L TO N
2130 S=e.
2140 FOR K=I TO M
2150 S=S+R(KII)*R(K3J>
2168 NEXT K
2170 F=S/H
2180 FOR K=I TO M
2198 A(KJ)=A(KqJ)+F*R(KoI)
2200 NEXT K
2210 NEXT J
2220 FOR K=I TO K
2230 A(K,I)=A(K,I)*Scale
2240 NEXT K
2258 W(I)-Scale*G
2268 G=S=Scale=8.
2278 IF (I>M) OR (I=N) THEN 2570
2280 FOR KwL TO N
2290 Scale=Scale+RBS(A(I,K))
2318 NEXT K
2310 IF Scale=8. THEN 2578
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2320 FOR K=L TO N
2330 Ra=A(IK)aR(IK)/Scale
2348 S=S+Aa*Ra
2358 NEXT K
2368 F=A(IL)
2378 G=-SQR(S)
2388 IF F<8. THEN G=-G
2398 H=F*G-S
2488 R(IL)=F-G
2418 FOR K=L TO N
2428 Rvl(K)=R(IK)/H
2438 NEXT K
2440 IF I=M THEN 2548
2458 FOR J=L TO M
2468 S=8.
2478 FOR K=L TO N
2488 S=S+R(JK)*R(IK)
2498 NEXT K
2588 FOR K=L TO N
2518 R(J,K)=A(JK)+S*RVI(K)
2528 NEXT K
2530 NEXT J
2548 FOR K=L TO N
2558 R(IK)=A(I,K)*Scale
2568 NEXT K
2578 Anorm-=MAX(Anorm,BS(W(I))+ABS(Rvl(I)))
2588 NEXT I
2598 FOR I=N TO 1 STEP -1
2688 IF I>-H THEN 2770
2618 IF G*8. THEN 2748
2628 FOR J=L TO N
2638 V(Jl-R(IJ)-R(IL),G
2648 NEXT J
2658 FOR J=L TO N
2668 S=8.
2678 FOR K-L TO N
2688 S=S+R(IOK)*V(KOJ)
2698 NEXT K
2788 FOR K-L TO N
2718 V(KJ)=V(KJ)eS*V(K,I)
2728 NEXT K
2738 NEXT J
2748 FOR J=L TO N
2758 V(IJ)=V(JI)=8.
2768 NEXT J
2778 V(I,I)=I.
2788 G=Rvl(I)
2798 L=I
2888 NEXT I
2818 FOR I=N TO 1 STEP -1
2828 LuI+I
2838 GNW(I)
2848 IF 1>=H THEN 2888
2858 FOR J3L TO N
2868 A(IJ)-=8.
2878 NEXT J
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2880 IF G=8. THEN 3050
2890 G=t./G
2900 IF I=N THEN 3010
2910 FOR J=L TO N
2920 80.
2930 FOR K=L TO M
2940 S=S+A(KI)*R(KJ)
2950 NEXT K
2960 F=S/R(I,1)*G
2970 FOR K=I TO M
2980 R(KJ)=A(KJ)+F*R(KI)
2990 NEXT K
3000 NEXT J
3010 FOR J=1 TO N
3020 A(J,I)=R(JoI)*G
3030 NEXT J
3040 GOTO 3080
3050 FOR J=I TO M
3060 R(JI)D=.
38?7 NEXT J
3880 R(I,I)=R(I,I)+I.
3090 NEXT I
3100 FOR K=N TO I STEP -1
3110 FOR Its=I TO 30
3120 FOR L=K TO I STEP -1
3130 Nm=L-1
3140 IF (RBS(Rvl(L))+Rnorm)=Anorm THEN 3360
3150 IF (ABS(W(Nm))+Rnorm)=Rnorm THEN 3170
3160 NEXT L
3170 C-0.
3180 S=I.
3190 FOR ImL TO K
3208 F=S*RvI(1)
3210 Rvl(I)=C*Rvl(1)
3220 IF (RBS(F)+Anorm).Rnorm THEN 3360
3230 G=W(I)
3240 H-SQR(F*F+G*G)
3250 W(I).H
3260 H=I./H
3270 C=G*H
3280 S=-F*H
3290 FOR J31 TO M
3308 Y=A(JNm)
3310 Z=A(JI)
3320 A(JpNm)=Y*C+Z*S
3330 R(J I)=-Y*S+Z*C
3340 NEXT J
3350 NEXT I
3360 ZuW(K)
3370 IF L<>K THEN 3440
3388 IF Z>=O. THEN 3430
3390 W(K)8-Z
3400 FOR 3=u TO N
3410 V(J,K)=-V(JK)
3428 NEXT J
3430 GOTO 3970
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3440 IF Its<30 THEN 3470
3450 PRINT "NO CONVERGENCE IN 30 ITERRTIONS"
3460 PAUSE
3470 X=W(L)
3480 Nm=K-1
3498 Y=W(Nm)
3500 G=RvI(Nm)
3510 H=Rvl(K)
3528 F=( (Y-Z)*(Y+Z)+(G-H)*(G+H) )/C2. *H*Y)
3530 G=SQR(F*F+1.)
3540 AaRABS(G)
3558 IF F<O. THEN Aa=-Ra
3568 F=((X-Z)*(X+Z)+H*<(Y/(F+Ra))-H))/X
3578 CMS=1.
3588 FOR J=L TO Nm
3598 [=J+j
3680 G=Rv1(I)
3610 Y=W(I)
3620 H=S*G
3638 G=C*G
3648D ZuSQR(F*F+H*H)
3650 Rvi(J)=Z
3660 C=F/Z
3670 S=H/Z
3688 F=X*C+G*S
3690 G=-X*S+G*C
3788 H=Y*S
3718 Y=Y*C
3728 FOR Jj-1 TO N
3730 X=V(Jj 1 J)
3740 Z=V(Jj,I)
3750 V(Jj,J)=X*C+Z*S
3760 V<JjI)=-X*S+Z*C
3778 NEXT Jj
3788 Z=SQR(F*F+H*H)
3798 W(J)=Z
3808 IF Z=O. THEN 3848
3810 Zinl./z
3828 C=F*Z
3838 SuH*Z
3848 F=C*G+S*Y
3850 X=-S*G+C*Y
3860 FOR 3Jjm TO M
3870 YwA(JJJ)
3888 Z=A(JjOI)
3898 A(Jj,J)inY*C+Z*S
3988 A(Jj, I)m-Y*S+Z*C
3910 NEXT Jj
3920 NEXT J
3938 Rvl<L)=O.
3948 Rvl<K)inF
3958 W(K)=X
3960 NEXT 'Its
3978 NEXT K
3980 SUBEND
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180 PLOT ROC 7ROM EIGENVALUES HEIG-, LINES 120 & 1060
20 Delxim.08 I INITIAL INCREMENtT ON CHAP. FUJNCTION
30 M-128 I INITIAL SIZE OF FFT
40 ss=O. I SHIFT b
58 To18=I.E-36 TOLERANCE FOR FALSE ALARMi PROEfiBILITY
68 Tolil=.E-32 1 TOLERANCE FOR DETECTION4 FROBAFIEILITIES
7e DOUBLE M,Nr,Kc,Kd,Kdc,Ms,l,Ks,Ns,Im,Mm !INTEGERS
88 DIM E(8:20,1:1O8),D(la188),Cos~(8z4896) 1 20 NONZERO SNPs
98 DIM X(8:16383),Y(8il6383),Pr(8:26,6:127)
t8o PRINT t'Delxi -';Delxi,"M u';M,"b =";Bs
118 MASS STORAGE IS "tCS80,71'
120 ASSIGN #1 TO "EIG"
138 READ #1;Nr,Kc,Kd N O. OF SNRs, START IEND OF SUMMIER
148 Kdc=Kd-Kc+1
150 REDIM E(OiNr,1:Kdc),D(1:Kdc)
160 READ #1;E(*) I EIGENVALUES
170 GIt41T
188 PLOTTER IS "GRAPHICS"
198 GRAPHICS ON
280 REDIM Cos(0: M/4), X(O:Mf-i), Y(O:Mf-i)
2183 A=2.*PI/M
228 FOR Ms89 TO M/4
238 Cos(Ms)=C05(A*Ms) !NITIAL QUARTER-COSINE TABLE
240 NEXT Ms
250 Tol=TolO
268 FOR 1=0 TO Hr I r NONZERO SIGNAL-TC-NOISE PATIOSS
270 IF 1>0 TH~EN Tol=Toll
288 FOR Ks~l TO Kdc
298 D(Ks)=E(I,Ks) I COPY EIGENVALUES
388 NEXT Ks
318 Mux=SUM<D) I MEAN OF RANDOM VARIABLE x
32e R=O. IARGUMENT OF SOUFRRE ROOT
338 P1I. I POLARITY INDICATOR
348 Muy=mux+Bs IMEAN! OF y x + b
350 MAT X-(O.)
368 MAT Y=(O.)
378 Y(O)=.5*Dtlxi*Muy
380 Ns8O
390 Ns=Ns+l I LOOP ON xi
400 Xi=Delxi*Ns I ARGUMENT xi OF CHAR. Ft-4.
418 Txi-Xi*2. I CALCULATION OF
428 PrlI. I CHARACTERISTIC
430 Pi=O. I FUNCTION fy(xi)
448 FOR Ksl1 TO Kdc
458 Te=Txi*D(Ks)
460 Pe=Pr+Te*Pi
478 Pi=Pi-Te*Pr
488 Pr-P.
498 NEXT Ks
500 CALL Sqr(Pr,PiSroSt)
518 De-Sr*Sr+Si*Si
528 Fyr=Sr/De
530 Fyiin-Si/Do
540 Ro=R
558 R-ATH(Fyi/Fyr)
560 IF ABS(R-Ro>>1.6 THEN P=-P
570 IF P>O. THEN 688
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580 Fyr=-Fyr
590 Fyiin-Fyi
6080 Ms=Ns MODULO M 1COLLAPSING
610 AuFyr/Hs
620 B=Fyi/Ns
630 X(tls)uX(Ils)+R
648 Y(Ms)=Y(Ms)+B
650 IF A*A+B*B<Tol THEN 670
660 GOTO 390
670 CALL Fft 14(M$Cos(*), X(*) ,Y(*))
688 GCLEAR
698 WINDOW 0,tl,-18,0
780 LINE TYPE 3
718 GRID M/891
728 LINE TYPE 1
730 FOR Ks- TO M-1
740 T=Y(Ks)/PI-Ks/M
758 Y(Ks)=Pru.5+T 1EXCEEDANCE PROBABILITY IN Y(*)
760 IF Pr>=1.E-16 THEN Y=LGT(Pr)!Y(Ks)=PROB(x>2 PI Ks/(M Delxi)-Bs)
778 IF Pr<=-I.E-16 THEN Yin-32.-LGT(-Pr)
780 IF ABS(P.-)<1.E-16 THEN Y--16.
798 PLOT Ks,Y
see NEXT Ks
81a PENUP
828 IF I=Hr THEN 948
838 PRINT I;
840 INPUT "SCALE FFT SIZE BY 1,2,4,81 ... 0,Im
850 Mm=MIH<M*lm, 16384)
868 IF Mm=M THEN 940
870 Delxi=Delxi*M'Ilw
880 M-Mm
890 RE')IM Cos(0:M/4),X(0:M-1),Y(8:M-1)
988 A=2.*PI/M
918 FOR Ms-0 TO M/'4
928 Cos(Ms)=COS(R*Ms) I QUARTER-COSINE TABLE; <= 4096
938 NEXT Ms
948 FOR Ksin8 TO 127
950 Pr(I,Ks)-Y(Ks) !STORE FOR ROC PLOT
960 NEXT Ks
970 NEXT I
988 FOR Ks=8 TO 127
998 IF Pr(8,Ks)<.1 THEN 1010

1000 NEXT Ks
1818 Ms-Ks-1
1028 FOR Ks=Ms TO 127
10310 IF Pr(O,Ks)<IE-18 THEN 1850
1048 NEXT Ks
1858 Ns=Ks
1868 ASSIGN #1 TO WROCII
1070 PRINT #1;Ms,Ns,Nr
1888 PRINT #1;Pr(*)
1898 ASSIGN #1 TO *
1180 DIM Pf(1114),Pd(litS)
1118 DATA 1E-10,IE-9,1E-8,1E-7,IE--6,1E-5,IE-4
1120 DATA .881,. 002,.0085,.01,.82, . 5, .1
1138 READ Pf(*)
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1148 DATA .01,.821.85,.1,.2,.3,.4,.5,.6,.7
1150 DATA .8,.9,.95,.98,.99,.995,.998,.999
1168 READ Pd(*)
1178 FOR I=1 TO 14
1180 Pf(1)=FNInvphi(Pf(1))
1198 NEXT I
1288 FOR =11 TO 18
1210 Pd(I)=FNInvphi(Pd(1))
1228 NEXT I
1238 GCLERR
1248 XI=Pf(1)
1258 X2=Pf(14)
1268 YI=Pd(1)
1278 Y2=Pd(18)
1288 WINDOW XIX2,YIY2
1298 LINE TYPE 3
1388 FOR I=1 TO 14
1310 MOVE Pf(1),YI
1328 DRAW Pf(I),Y2
1338 NEXT I
1348 FOR Im1 TO 18
1358 MOVE XIPd(1)
1368 DRAW X2,Pd(I)
1378 NEXT I
1388 PENUP
1398 LINE TYPE I
1488 FOR Ks=Ms TO Ns
1418 Pr(8,Ks)=FNInvphi(Pr(0,Ks)) ! FALSE ALARM PROBABILITY
1420 NEXT Ks
1438 FOR I=1 TO Nr
1440 FOR Ks=Ms TO Ns
1450 X=Pr(8,Ks)
1460 Pr=Pr(I,Ks)
1478 IF Pr>.9999 THEN 1510
1480 Pr(I,Ks)=Y=FNInvphi(Pr)
1490 PLOT X,Y
1508 IF Pr<.01 THEN 1528
1518 NEXT Ks
1528 PENUP
1530 NEXT I
1548 PAUSE
1558 END
1560 1
1578 DEF FNArg(X,Y) 1 PRINCIPAL ARG(Z)
1588 IF X=8. THEN RETURN .5*PI*SGN(Y)
1598 A=RTN(Y/X)
1680 IF X>8. THEN RETURN A
1610 IF Y<O. THEN RETURN A-PI
1620 RETURN A+PI
1630 FNEND
1648 1
1658 SUB Sqr(XY,U,V) I PRINCIPAL SQR(Z)
1668 F=SQR(SQR(X*X+Y*Y))
1678 T=.5*FNArg(XY)
1688 U-F*COS(T)
1698 V=F*SIN(T)
1788 SUBEND
1718 I
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1720 DEF FNInvphi(X) I AMS 55, 26.2.23
1730 IF Xw.5 THEN RETURN 0.
1740 P=MIN(X,1.-X)
1758 P=IIAX(P,1.E-20)
1760 T=-LOG(P)
1778 TwSQR(T+T)
1788 P=1.+T*(1.432788+T*(. 189269+T*.001308))
1798 P-T-(2. 515517+T*( *882853+T*. 101328) )/P
1888 IF X(.5 THEN Pu-P
1818 RETURN P
1828 FNEND
1838
1848 SUB Fftl4(DOUBLE NqREAL Cos(*),X(*),Y(*)) IH<=2"14=16384; 8 UP
1858 DOUBLE Log2n,N1,N2,N3,H4,J,I( ! INTEGERS < 2-'31 = 2,047,463,648
1868 DOUBLE 11,12$13,14,I5,16,17,18,19,118,111,112,113,1 k4,L(8: 13,)
1878 IF N-I THEN SUBEXIT
1888 IF N>2 THEN 1960
1898 A-X(8)+X(I)
1908 X(1)=X(o>-X(1)
1918 X(O)MA
1928 A=Y(O)+Y(I)
1938 Y(1)=Y(8)-Y(1)
1948 V(o)-A
1950 SUBEXIT
1968 A-LOG(t'b'LOG(2.)
1978 Log2nmA
1988 IF ABS(A-Log2n)<1.E-8 THEN 2810
1998 PRINT "N ";H"1 0HT A POWER OF 2; DISALLOWED."
2888 PAUSE
2818 N1-N/4
2828 N2=HI+1
2838 H3=N2+1
2848 H4-N3+Hl
2858 FOR 11.1 TO Log2n
2868 l2m2A(Log2n-11)
2878 13=2*12
2880 14-N/13
2098 FOR I5=1 TO 12
2188 I6-(15-1)*14+1
2118 IF 16<=N2 THEN 2158
2128 Al=-Cos(N4-16-1)
2138 A2=-Cos(I6-NI-1)
2148 GOTO 2178
2150 AluCos(I6-1)
2168 A2=-Cos(N3-I6-t)
2170 FOR 17=8 TO N-13 STEP 13
2188 18=17+15-1
2198 19=18+12
2283 TI=X(I8)
2218 T2=X(19)
2228 T3=Yqj8)
2238 T4-Y(19)
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2240 R3=TI-T2
2250 R4=T3-T4
2268 X(18)=TI+T2
2278 Y(18)=T3+T4
2288 X(19)=Al*R3-R2*R4
2298 Y(19)=RI*A4+R2*A3
2388 NEXT I?
2318 NEXT 15
2320 NEXT I1
2338 I1uLog2n+l
2340 FOR 12=1 TO 14
2358 L(12-1)=I
2368 IF 12>Log2n THEN 2380
2378 L(12-1)=2A(II-12)
2388 NEXT 12
2398 K=8
2488 FOR 11=1 TO L(13)
2418 FOR 12=11 TO L(12) STEP L(13)
2428 FOR 13=12 TO L(II) STEP L(12)
2438 FOR 14=13 TO L(18) STEP L(11)
2448 FOR 15=14 TO L(9) STEP L(18)
2456 FOR I6=15 TO L(8) STEP L(9)
2460 FOR 17=16 TO L(7) STEP L(8)
2478 FOR 18=17 TO L(6) STEP LM7)
2488 FOR 19=I8 TO L(5) STEP L(6)
2498 FOR I18=19 TO L(4) STEP L(5)
2588 FOR 111=118 TO L(3) STEP L(4)
2518 FOR 112=11 TO L(2) STEP L(3)
2528 FOR I13=112 TO L(1> STEP L(2)
2530 FOR I14=113 TO L(8) STEP L(1)
2548 J=114-1
2558 IF K>J THEN 2628
2568 ARX(K)
2578 X(K>=X(J)
2588 X(J)=R
2598 ARY(K)
2680 Y(K)=Y(J)
2610 Y(J)=R
2620 K=K+I
2638 NEXT 114
2648 NEXT 113
2658 NEXT 112
2668 NEXT Ill
2678 NEXT 118
2688 NEXT 19
2698 NEXT 18
2788 NEXT I7
2710 NEXT 16
2728 NEXT 15
2738 NEXT 14
2748 NEXT 13
2758 NEXT 12
2768 NEXT 11
2778 SUDEND
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10 1 SIMULATION FOR ONE-POLE PROCESSES
20 As=.85 IINPUT SIGNAL PARAMETER
30 Bs=.77 I INPUT NOISE PARAMETER; LINE 160
40 Cs=1.13 IFILTER PARAMETER
50 R=.7 1 INPUT POWER SNR
60 Ka=4
70 Kb=11
80 Kc-2
98 Kd=16

1rio Bins=1000
11e Num=1E6 INUMBER OF TRIALS
120 Deltaz=.25 I BIN SIZE FOR OUTPUT Z
130 DOUBLE Ka,Kb,Kc,Kd,Bins,Num,It,K,M
140 DIM E(100),S(100),Yn 100),Ys( 100,TU1008
150 Ea-EXP(-As)
160 Eb=EXP(-Bs) !WHITE NOISE: FOR Bszinf~, SET Eb=O
170 Ec=EXP(-Cs)
180 Fa=SQR(R*(1.-Ea*Ea))
190 Fb=SQR(I.-Eb*Eb)
200O REDIM E(OiKd-Ka)
210 E(O)zCs
220 FOR K-1 TO Kd-Ka
238 E(K)-E(K-1)*Ec
240 NEXT K
250 REDIM S(-38: Kd), Yn(Kc- : Kd) ,Ys(Ka: Kd>,T(1: Bins)
268 FOR Ital TO Num
278 S(-30)=Nk=Yk-0.
280 FOR K=-29 TO Kc-1 I ALLOW STEADY STATE
290 R1=2.*RND-1. 'BOX-MULLER

380 R2=2.*RHD-1.
318 R3=R1*RI+R2*R2
320 IF R3>1. THEN 290
330 R3.SQR(-2.*LOG(R3)/R3)
340 RI=R1*R3
358 R2aR2*R3
360 S(K)=Fa*R1+Ea*S(K-1) I FILTER INPUT SIGNAL
370 Nk=Fb*R2+Eb*Nk I FILTER INPUT NOISE
380 Yk=Cs*Nk+Ec*Yk I FILTER OUTPUT NOISE
390 NEXT K
400 Yn(Kc-1)-Yk
410 FOR KinKc TO Kd
420 Rls2.*RHD-1.
430 R2=2.*RND-1.
448 R3=R1*R1*R2*R2
450 IF R3>1. THEN 428
460 R3=SQR(-2. *LOG(R3)/R3)
470 R1=R1*R3
48e R2-R2*R3
490 MzK-1
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588 S(K)=Fa*RI+Ea*S(M) I FILTER INPUT SIGNAL
510 Nk=Fb*R2+Eb*Nk ! FILTER INPUT NOISE
528 Yn(K)=Cs*Nk+Ec*Yn(M) I FILTER OUTPUT NOISE
538 NEXT K
540 FOR K=Ka TO Kd
558 Sue.
568 FOR M=Ka TO MIN(KKb)
5?8 S=S+E(K-M)*S(M) I FILTER OUTPUT SIGNAL
588 NEXT M
598 Ys(K)=S
688 NEXT K
618 Z=e.
628 FOR K=Kc TO Ka-1
638 T=Yn(K)
648 Z=Z+T*T
658 NEXT K
668 FOR K=Ka TO Kd
678 T=Ys(K)+Yn(K)
688 Z=Z+T*T
698 NEXT K
788 K=INT(Z/Deltaz)+I
718 K=MIN(KBins)
728 T(K)=T(K)+I.
738 NEXT It
748 FOR K=Bins-1 TO I STEP -1
758 T(K)-T(K)+T(K+I)
768 NEXT K
778 MAT T=T/(Num)
788 GINIT
798 PLOTTER IS "GRAPHICS"
808 GRAPHICS ON
818 WINDOW 8,Binsg-5,8
828 GRID Bins/4,1
838 FOR KuI TO Bins
848 T=T(K)
858 IF T>8. THEN 870
868 GOTO 898
878 PLOT KLGT(T)
888 NEXT K
898 PENUP
98 FOR K-Bins TO I STEP -1
918 T=I.-T(K)
920 IF T>8. THEN 948
938 GOTO 960
940 PLOT KLGT(T)
958 NEXT K
968 PENUP
978 PAUSE
980 DUMP GRAPHICS
990 END
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APPENDIX E. PROGRAM FOR COLORED INPUT NOISE

One program is listed in this appendix. It computes the

covariance matrices and eigenvalues as described in appendix D,

but now for a colored noise input. The program for computing the

receiver operating characteristics from the eigenvalues is

identical to that listed above and therefore has not been

repeated here.

18 I COMPUTE COVARIANCE MATRICES AND EIGENVALUES
20 I STORE EIGENVALUES IN "EIG" IN LINE 2260
30 Ka=-10 I INPUT SIGNAL START
40 Kb=5 I INPUT SIGNAL END; Kb >= Ka
58 Kc=O I ACCUMULATOR START
68 Kd=5 A ACCUMULATOR END; Kd >= Kc,Ka
78 Delta=.2 I TIME SAMPLING INCREMENT (SECONDS)
80 J=3 I NUMBER OF SIGNAL COMPONENTS
90 DATA II.,-48.,75. I SIGNAL SCALINGS (WE SET SUM = 1)

1t0 DATA 1.,.125,.866667 1 SIGNAL TIME CONSTANTS (SECONDS)
110 M=2 I NUMBER OF NOISE COMPONENTS
120 DATA 39.,68. 1 NOISE SCRLINGS (WE SET SUM = 1)
130 DATA .2,.4 1 NOISE TIME CONSTANTS (SECONDS)
140 N=4 I NUMBER OF FILTER COMPONENTS
158 DATA 1.,2.,3.,4. 1 FILTER SCALINGS (ARBITRARY)
168 DATA .3,.5,.79.9 I FILTER TIME CONSTANTS (SECONDS)
170 Nr=20 ! NUMBER OF SIGNAL-TO-NOISE RATIOS
180 DATA 0,1,2,3,4,5,6,7,8,9910 1 INPUT SNRS IN DB
190 DATA 11,12913,14,15,16,17;18,19
288 IF (Ka<=Kb) AND (Kc<=Kd) AND (Ka<=Kd) THEN 236
210 PRINT "PROBLEM WITH PARAMETERS"
220 STOP
230 DIM Rlpha(10),A(10),Beta(1B),B(10),Psi(10),C(1l),R(20)
240 DIM W(1I8),Pc(10),Ec(18),Pcv(10),Eb( 1),Chb( 1),Shb(16)
250 DIM Chc(18),Shc(10),Mu(10),Gamma( 1),Cn(200),Ea( 1)
260 DIM E(0,1000),Gca(100),Gcda(100),Gcb(188),Gbda(166)
270 DIM Cs(5808),Cw(0,10008),Ca(O,18000),D(100),Eig(0,2000)
280 DOUBLE Ka,Kb,Kc,Kd,JM,NNr,Ns,Ks,Ms,Kdc,Ko
290 DOUBLE LI,L2,L,LIIJs,Qs,Ki,Ksl,KI,Ks2,K2,1
300 REDIM Rlpha(1:J),A(1uJ)
310 READ Alpha(*),R(*)
320 MAT Alpha=Rlpha/(SUM(Rlpha))
330 MAT A=(Delta)/A
340 REDIM Beta(1IM),B(liM)
350 READ Beta(*),B(*)
360 MAT Beta=Beta/(SUM(Beta))
370 MAT B=(Delta)/B
380 REDIM Psi(lIN),C(IsN)
390 READ Psi(*),C(*)
408 MAT C=(Delta)/C
410 REDIM R(IiNr)
420 READ R(*)
430 REDIM W(Kc:Kd)
440 CALL Weights(Kc,Kd,W(*))
450 MAT W=SQR(W) 75
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1870 Cn(Ks)=Cn(Ks)Nlu*P
1888 NEXT Ks
1090 NEXT Ms
1100 FOR Ns~l TO N
1110 Ga=Gaunma(Ns)
1120 E=Ec(Ns)
1130 Psi.
1140 Cn(O)=Cn(O)+Ga
1150 FOR Ks-l TO Kdc
1160 P=P*E
1178 Cn(Ks)=Cn<Ks)+Ga*P
1188 NEXT Ks
1190 NEXT Ns
1200 FOR Js=1 TO J 1 FILTER OUTPUT SIGNAL COVARIANCE
1210 A(Js)=EXP(A(Js))
1220 NEXT Js
1230 Ko=MAX(Ka,Kc)
1240 REDIM Ea(1zN)lE(1:N,KosKd)
1250 FOR Ns=1 TO N
1260 E=Ec<Ns)
1270 Ea(Ns)1l./E
1280 E(Ns,Ko)=EXP(-C(Ns)*Ko)
1290 FOR Ks=Ko+1 TO Kd
1300 E<Ns,Ks)=E<Ns,Ks-1)*E
1310 NEXT Ks
1320 NEXT Ns
1333 L1=MIN(Ko,Kb)+1
1340 L2=MIN(Kd,Kb)+1
1350 REDIM Gca(LI:L2)$Gcda(L1 :L2),Gcb(L1 :L2),Gbda(L1 :L2ý)
1360 L=Kd-Kotl
1370 REDIJI Cs(1,L*(L+1)/2)
1380 L11-L1+1
1398 FOR Js~l TO J
1408 AlmAlph&(Js)
1410 RAR(Js)
1420 1AR.
1430 FOR Ni-i TO N
1440 C-Ea(Ns)
1458 Ca=C*A
1460 Cda=C/A
1478 Cal-1.-Ca
1480 Ac-A-C
1490 Re=A1*Pc(Ns)
1508 Uca=CaAK&/Cal
1518 Gca(L1)inCa^L1/Cal
1520 Gcda(L1)=CdaAL1/(1.-Cda)
1538 FOR Ks-Lul TO L2
1548 Gca(Ks)-Ca*Gca(Ks-1)
1550 Gcda(Ks)inCda*Gcda(Ks-1)
1560 NEXT Ks
1570 FOR OswI TO N
1588 B=Ea(Qs)
1590 Rtet=A*Pc(Qs)
1600 BaDB*A
1610 Bda=B/A
1628 Cb-C*B
1638 BaluI.-Ba
1648 Cbl-1.-Cb
1650 Gba-Ba-Ka/Ba1
1668 RbsA-B
1670 F=B*RI/<Ab*Bal)
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1680 S~I-Cb-Ka/Cb1*(A1+Cb1)/(Ab*Rc)
1699 Gcb(L1)wCb-L1,Cbt
1700 Gbda(L1)=BdaALl/<1.-Bda)
1718 FOR Ks-LI1 TO L2
1720 Gcb(Ks)=Cb*Gcb(Ks-1)
1730 Gbda(Ks)=Bda*Gbda(Ks-1)
1740 NEXT Ks
1750 Ki=8
1760 FOR Ksl=Ko TO Kd
1770 K1=MIN(KslKb)+l
1788 S2=S1+Gcb(K1)*F-Gba*Gcda(K1)
1798 S3=Gca(K1)-Gca
1880 E-Ree*E(Hs,Ksl)
1810 FOR Ks2=Ksl TO Kd
1820 Ki.Ki+1
1838 K2=MIN(Ks,2oKb)+1
184e S-S2+Gbda(K2)*S3 I sum S
1850 Cs(Kt)=Cs(Ki)+E*E(Gs,Ks2)*S
1868 NEXT Ks2
1878 NEXT Ksl
1880 NEXT gs
1890 NEXT Ns
1900 NEXT Js
1910 L=Kd-Kc+l I TOTAL WEIGHTEDJ COVARIANCE IMATrx'IX
1920 REDIM Cw(1:L, IiL),Ca(1:L, 1:L),D(1:L),Eig(0:tNr, 1:L)
1930 Ll1Kc-1
1940 R-0.
1950 FOR 1=8 TO Nr
1968 Ki-8
1970 IF 1=0 THEN 1998
1988 R-IO.-(R(1)*.l) 1 INPUT POWER SIGN4AL-TO-NOISE RATIO
1990 FOR Ksl=Kc TO Kd
2000 W=W(Ksl) I WEIGHTS (w(k))
2810 FOR Ks2=Ksl TO Kd
2828 IF Ksl>-Ko THEN 2858
2830 CsBo.
2848 GOTO 2070
2850 Ki-Ki+1
2860 Cs-Cs(Ki)
2078 Pr=W*W(Ks2)*(Cn(Ks2-Ksl)+R*Cs)
2880 LI=Ks1-L11
2898 L2-Ks2-LlI
2100 Cw(LI,L2)=Cw(L2,LI)=Pr
2118 NEXT Kx2
2128 NEXT Kal
2130 CALL Svd(L,LpCw(*)pCa(*)pD<*>) I EIGENVALUES
2140 MAT SORT D(*) DES
2150 IF D(L)>S. THEN 2188
2160 PRINT "PRODLEtII SOME NON-POSITIVE EIGENVALUES"
2170 PAUSE
2180 PRINT "1 -11111" CONDITION NUMBER =ah;D(1),DCL)
2198 PRINT D(*)
2288 PRINT
2218 FOR Kssl TO L
2220 Eig(IIKs)=D(Ks) 1 STORE EIGENVALUES
2230 NEXT Ks
2240 NEXT 1
2250 MASS STORAGE IS "iCS80,7"
2268 ASSIGN #1 TO EIEIGa

2278 PRINT #1;Nr,Kc,Kd,Eig<*)
2288 ASSIGN #1 TO*
2298 END
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Comparison of Two Kernels for the
Modified Wigner Distribution Function

Chintana Griffin and Albert H. Nuttall

ABSTRACT

This document contains the lecture presentation of the paper

entitled "Comparison of Two Kernels for the Modified Wigner

Distribution Function," given at the Society of Photo-Optical

Instrumentation Engineers International Symposium on Optical

Applied Science and Engineering, Conference 1566 on Advanced

Signal Processing Algorithms, Architectures, and Implementations,

21 - 26 July 1991, San Diego, California.

We compare the modified Wigner distribution functions

obtained via the Choi-Williams kernel and its rotation, as well

as by the tilted Gaussian kernel. Based on several commonly used

examples, we demonstrate that the modified Wigner distribution

obtained via the Gaussian kernel can minimize the artifacts more

effectively and had the capability of selectively filtering out

undesired components.
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NUWC-NL Technical Report 10015
19 February 1992

Explicit Solution of Difference Equation for the
Wavenumber Response of Fluid-Loaded Stiffened Plate

Albert H. Nuttall

ABSTRACT

A method for solving a difference equation encountered for

excitation of a line-driven, fluid-loaded, infinite flat plate

with nonperiodic attached rib stiffeners is presented. For the

case of excitation by Q complex exponentials, a linear set of Q
simultaneous equations must be solved for each wavenumber k. For

the most general excitation, a linear integral equation must be

solved at each k. A possible shortcut for obtaining solutions at

certain shifted values of wavenumber k is pointed out.

Approved for public release; distribution is unlimited.
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LIST OF SYMBOLS

L periodic inter rib spacing

a offset of one set of rib stiffeners to another set

Q number of sets of attached rib stiffeners, (1)

D rigidity of plate, (1)

w(x) transverse plate displacement, (1)

m mass per unit area of plate, (1)

w applied excitation frequency (radians/second), (1)

Pe(x) external pressure due to line-force, (1)

Pa(x,0) acoustic pressure on upper surface of plate, (1)

Pq(x) total pressure exerted by q-th set of rib stiffeners

k wavenumber, (2)

W(k) wavenumber response, (2)

F(k) auxiliary function, (2)

Y(k) auxiliary function, (2)

kL wavenumber defined by periodic spacing, (2)

Bq dynamic structural mass of q-th rib stiffener set, (2)

aq q-th offset distance, (2)

FO magnitude of applied line force, (3)

x 0 point of application of line force, (3)

S(k) auxiliary function, (4)

k b free in-vacuum plate wavenumber, (4)

PO mass density of acoustic fluid, (4)

k 0 acoustic wavenumber w/co, (4)

mil mass per unit length of q-th set of rib stiffeners
q
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m,n,p,q integers

E real nonzero variable, (5)

{Ani given sequence, (5)

a q q-th exponential factor, (6)

W(k) auxiliary summation function, (8)

F (k) auxiliary summation function, (13)
-q
Y pq(k) auxiliary summation function, (14)

N(k) numerator term for Q = 2, (20)

D(k) denominator term for Q = 2, (21)

B(u) Fourier sum, (22)

W(u,k) auxiliary summation function, (24)

F(u,k) auxiliary summation function, (29)

Y(v-u,k) auxiliary summation function, (30)

Wp(uk) p-th order approximation to W(u,k), (33)
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EXPLICIT SOLUTION OF DIFFERENCE EQUATION FOR THE

WAVENUMBER RESPONSE OF FLUID-LOADED STIFFENED PLATE

INTRODUCTION*

Acoustic radiation from the upper surface of a fluid-loaded

stiffened plate has been examined by Cray [1]. The formulation

developed there produces an implicit algebraic equation for the

Fourier transformed plate wavenumber response. This response

must be manipulated into an explicit form in order to obtain a

solution for the plate's structural response and to obtain the

near- and far-field generated acoustic response. The following

is a brief synopsis of the formulation for the acoustic radiation

from a stiffened plate.

The infinite plate investigated in [1] was configured to have

two infinite sets of attached rib stiffeners. The stiffeners

composing a given set were identical and were spaced periodically

with distance L. One set of stiffeners, however, was shifted by

an amount A from the other set. In this manner, portions of the

plate were configured with repeating sections having nonperiodic

rib spacing.

The governing equation of motion for the surface displacement

of the fluid-loaded isotropic plate for an applied line-force,

with Q sets of attached rib stiffeners, is given by

D d4w(x) m W2 w(x) = P (x) - P (X,O) - P x)
dx 4  e a q=1 q

The introduction was contributed by Dr. Benjamin A. Cray.

1
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where D is the rigidity of the plate, w(x) is the transverse

plate displacement, m is the mass per unit area of the plate,

w is the applied excitation frequency, Pe (x) is the external

pressure due to the applied line-force, Pa(xO) is the acoustic

pressure acting on the upper surface of the plate, and P q(x)l

are the total pressures exerted by each set of attached rib

stiffeners.

Rotary inertia and shear deformation effects within the plate

and rib stiffeners were neglected. The stiffeners exerted

reactive forces upon the plate but applied no angular moments.

Equation (1) was transformed, term by term, using exponential

Fourier transforms. The spatial transform variable, k, has the

physical significance of wavenumber. It was assumed that the

transforms are well defined and exist over the entire domain of

integration.

Upon transforming (1) into the wavenumber domain, the

implicit form of the wavenumber response, for the fluid-loaded

stiffened plate, can be written as

W(k) = F(k) - Y(k) = W(k + nkL) x

x [BI + B2 exp(inkL al) + -.- * + BQ exp(inkLAQ-l)) , (2)

where W(k) is the (transformed) wavenumber response. The

quantities on the right-hand side of (2) are defined as

F exp(-ikxo)1

F(k) = 0 Y(k) = 1 (3)S(k) Y ,)(3

2
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where

D(k4 - k4) 1 02 for Ikl < kb k2 _k2 zo

S(k) = 2 (4)

ID(k k 2 - for oki > 1%

1 0

where kb = (m w2/D)¼ is the free in-vacuum plate wavenumber,

kL = 2n/L is the wavenumber defined by the periodic spacing, and

B. = m' w2 /L is the dynamic structural mass of the q-th rib
q q

stiffener set. Also, Aq is the q-th offset distance.

Notice in (2) that the wavenumber or spectral response W(k)

appears implicitly. The difficulty now lies in determining an

explicit expression for the plate's wavenumber response W(k).

That is, it is necessary to manipulate (2) such that the

summation which contains the shifted wavenumber responses

JW(k + nkL)I may be rewritten in terms of known quantities.

In (1], Cray obtained an explicit expression for W(k) for the

case of a single offset, that is, Q = 2 in (2). This corresponds

to two sets of rib stiffeners, where one set is offset from the

other. The following development is a significant extension of

the configuration of two sets of rib stiffeners to the case of an

arbitrary number of rib stiffener sets, each with different

offsets {Aq] , and to arbitrary excitation functions.

3/4
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DESCRIPTION AND SOLUTION OF DIFFERENCE EQUATION

In the following mathematical development, k and E are

arbitrary real variables, while m,n,p,q are integers. Also,

summations without limits are from -- to +-. We are interested

in finding the solution W(k) to the difference equation

W(k) = F(k) - Y(k) T An W(k + En) , (5)
n

where F(k) and Y(k) are given known functions of k, and sequence

A n) is also known. For E = 0, the solution tc (5) is immediate;

hence, c is nonzero and fixed in the following.
In fact, we are interested in the particular case where An is

a finite sum of Q complex exponentials in n (compare with the

second line of (2)):

An =7--Bq exp(ina ) for all n , (6)
q=l

where a q1, 1 • q S Q, are arbitrary (complex) distinct

constants, and B qj are arbitrary complex constants. The JBq}

and a qI are given. Furthermore, since

exp(ina q) = exp(in[aq - p2n]) for all p , (7)

there is no loss of generality in assuming that IRe(aq )I : n for

all 1 5 q S Q. If Im(aq) is nonzero for any q, then IAnI cannot

remain bounded at both limits of n = ±t. The earlier case solved

in [1] corresponded to Q = 2 and the special value of a1 = 0.

5
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DEFINITION AND PROPERTIES OF AUXILIARY FUNCTIONS

Define functions

W (k) = 1 W(k + En) exp(inaq) for 1 S q £ Q . (8)
n n

(The additional dependence of W (k) on E is suppressed

notationally.) It then follows that

W (k + Em) = 1 W(k + Em + En) exp(inaq) =
n

- E W(k + Ep) exp(i(p-m)aq) = exp(-imaq) W (k) , (9)
p

where we let p = m + n and used (8). This is the key relation

regarding the functions W (k) defined in (8), namely

q(k + Em) = exp(-imaq) W q(k) for 1 S q S Q . (10)

With the aid of (6) and (8), the summation on n in (5) can

now be manipulated into the form

1 An W(k + En) = Z W(k + En) 5-l Bq exp(ina q) = B W q(k)
n n q ~ q q_= q-

(11)

This enables us to express (5) in the alternative form

W(k) = F(k) - Y(k) Bq W (k) . (12)
q=l

6
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SOLUTION OF EQUATION (12)

At this point, in analogy to (8), it is convenient to define

two additional functions, namely,

F (k) = E F(k + £n) exp(inaq) for 1 • q < Q , (13)
n

Y q(k) = • Y(k + En) expIin(ap - aq)) for I S p,q S Q . (14)
n

Now, replace k by k + Em in (12) and use (10), obtaining

W(k + Em) = F(k + Em) - Y(k + Em) 7 B exp(-ima q) W (k) - (15)
q=1 q

When this equation is multiplied by exp(imap) and summed over all

m, there follows, by use of (8), (13), and (14),

W (k) = F (k) - q Y (k) B W (k) for 1 • p 5 Q . (16)
-p -p q1-pq q -q

This relation constitutes Q linear equations (at each k) in the Q

unknown functions W (k), 1 5 q S Q. The remaining quantities in

(16) can be obtained from (6), (13), and (14).

When (16) is solved for all the W q(k)), then (12) directly

yields the original quantity of interest, namely W(k) in (5), for

that particular value of k. Although this procedure appears to

require the solution of a new set of Q simultaneous linear

equations for each k of interest, there is a shortcut that might

be useful in some cases. Namely, reference to (15) reveals that

7
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W(k + em) can now be calculated easily for nonzero m, tor that k,

once F(k + Em) and Y(k + Em) have been computed, without the need

for another solution set. The same solutions W q(k)l are used on

the right-hand side of (15), regardless of the value of m under

consideration; only the finite summation in (15) need be redone.

Thus, the solution W to (5) at arguments k, k ± E, k ± 2E,...

can be found from the solution of one set of Q simultaneous

equations, (16).

For the special case of Q = 1, (16) can be immediately solved

to yield [1]

I(k) n F(k + En) exp(inal)
Hi(k) = 1 + B1 Yll(k) 1 + B1 n Y(k + en) (17)

n

Then (12) yields the explicit result (for Q = 1)

SF(k + En) exp(inal)

W(k) = F(k) - B1 Y(k) n (18)
1 + B1 Z Y(k + en)

n

In this form, it is possible to directly evaluate W(k) at any k

of interest merely by computing the terms encountered on the

right-hand side of (18). However, shortcut (15) is still better

for the particular arguments (k + EMI.

8
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For Q = 2, when the solutions of (16) are substituted into

(12), the function W(k) is given by the explicit expression

W(k) = F(k) - Y(k) N(k) '
W~~k) D(k) '(9

where

N(k) = B1 Fl(k) + B2 E2 (k) + B1 B2 x

x kfuc X2 2 (k) + F2 (k) X1 1 (k) - fl(k) Y2 1 (k) - E2 (k) X1 2 (k)]

(20)

and

D(k) = 1 + B 1, ll(k) B2 Y2 2 (k) +

+ B1 B2 [XII(k) Y2 2 (k) - Y1 2 (k) Y2 1 (k)] (21)

A program for the evaluation of (19) - (21), for the case where

Y(k) is real, is presented in the appendix; also, BI, B2 , l.I and

a2 are real. Then D(k) is real, but N(k), F(k), and W(k) are

complex. Also, Y2 2 (k) = [11 (k) is real, while F,(k), F2 (k), and

Y21 (k) = Y1 2 (k) are complex. The program uses these properties.

In general, for any Q, if (16) is solved analytically for the

set JW (k)) in terms of (B 1, IF (k)I, and pY (k)}, these
-qq -q -pq

results can be substituted or utilized in (12) to get an explicit

expression for W(k) that is valid for all k. For large Q, this

will be impractical; instead, numerical solution of the Q simul-

taneous equations, (16), will be required at each k of interest.

The only exception is to use (15) for the particular arguments

(k + Emj. (All results above actually hold for k and e complex.)

9/10
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SOLUTION FOR GENERAL SEQUENCE JAnf

In this section, we no longer restrict sequence fAnj to have

exponential form (6). Rather, for bounded given sequence {An},

define function

B(u) = • An exp(-inu) for lul < n , (22)
n

where u is real. Then, the sequence values can be found from

An = f du B(u) exp(inu) for all n . (23)

-n

The fastest variation with n that (23) allows for An is

exp(±inn); however, this is no loss of generality, as seen by

reference to (7). The case considered earlier in (6) corresponds

to B(u) being composed of a set of Q impulses of area Bq located

at u = "q, with Iaql < n, when aq is real.

Now, define function

W(u,k) = • W(k + En) exp(inu) for Jul ! i . (24)
n

(Again, the notational dependence on £ is suppressed.) The key

relation that W(u,k) satisfies is

W(u,k + cm) = 1 W(k + Em + En) exp(inu) =
n

= Z W(k + cp) exp(i(p-m)u) = exp(-imu) W(u,k) , (25)
p

where we let p = m + n and used (24). This relation,

11
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W(u,k + Em) exp(-imu) W(u,k) , (26)

is the analogue of (10) earlier.

The summation in (5) can now be expressed as

R

SAn W(k + En) E W(k + En) f du B(u) exp(inu) =
n n I

f f du B(u) W(u,k) , (27)

-TI

where we used (23) and (24). Therefore, the equation of

interest, (5), now takes the form

Jr

W(k) = F(k) - Y(k) f du B(u) W(u,k) (28)
-Jr

We now define, in analogy to (13) and (14), the two functions

F(u,k) = E F(k + En) exp(inu) for lul •S , (29)
n

Y(v-u,k) j Y(k + En) exp(in(v-u)) for Iul,IvI S i . (30)
n

When we replace k by k + Em in (28), and use (26), there

follows

W(k + Em) = F(k + em) - Y(k + Em) f du B(u) W(u,k) exp(-imu) .

-It (31)

We now multiply (31) by exp(imv), v real, and sum over all m, to

12
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obtain

W(v,k) = F(v,k) - f du Y(v-u,k) B(u) W(u,k) for Jvj < n , (32)

-nT

where we used (24), (29), and (30). This is a linear integral

equation, with kernel Y(v-u,k) B(u), for unknown W(u,k); that is,

for each k of interest, a new linear integral equation must be

solved. Then, W(u,k) will be known for Jul s n at that

particular k.

Once W(u,k) is known, (28) gives desired solution W(k) at

that particular k value, since F(k), Y(k), and B(u) are known

functions. If a large number of k values are of interest, (32)

can involve a great deal of computational effort; however,

arbitrary bounded sequence {AnI is now allowed in (5).

Furthermore, (31) then yields the solution for W at arguments

k, k ± c, k ± 2c,... without the need to solve another integral

equation.

The linear integral equation in (32) could be solved by

recursion; for example, the p-th order approximation is given by

W (v,k) E F(v,k) - j du Y(v-u,k) B(u) W _l(u,k) for Jvj S n
-p -

-n (33)

A possible starting value for this recursion is Wo(u,k) = E(u,k).

13/14
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SUMMARY

When the governing differential equation of motion for the

surface displacement of the fluid-loaded isotropic plate for an

applied line-force, with Q sets of attached rib stiffeners, is

transformed into the wavenumber domain, a difference equation is

encountered. Solution of this latter equation for exponential

excitation, for a particular value of wavenumber k, is

accomplished through the definition of auxiliary functions

involving sums of displaced wavenumber responses with exponential

factors. Finally, solution of a simultaneous set of Q linear

equations completes the required calculations. For the most

general excitation, the set of equations becomes infinite, that

is, a linear integral equation must be solved.

15/16
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APPENDIX. PROGRAM FOR (19) - (21)

In the following program for solution W(k) given by

(19) - (21), specified function Y(k) is presumed real; however,

F(k) is allowed to be complex. The following example corresponds

to

F(k) = exp(-.71 k 2 ) + i exp(-.91 k2 - k)

Y(k) = exp(-.63 k2 + k)

10 K=.7 ! k, wavenumber
20 E=.4 ! epsilon
3 Ll=.l alphal
48 L2=.2 I alpha2
50 B1=1.1
60 B2=1.3
70 CALL Fqk(K,E,LI,L2,Flr,F1i,F2r,F2i) (13)
80 CALL Ypqk(K,E,L1,L2,YII,Yl2r,YI2i) 0 (14)
90 B=BI*B2
100 Y=YII-Yl2r
110 D=Y1I*Y11-Y12r*Y12r-Y12i*Y12i
120 D=1.+(BI+B2)*YII+B*D I (21)
130 Nr=(F1r+F2r)*Y-(Fli-F2i)*YI2i
140 Nr=Bl*Flr+B2*F2r+B*Nr I (20)
150 Ni=(FPi+F2i)*Y+(Flr-F2r)*Y12i
160 Ni=Bl*Fli+B2*F2i+B*Ni I (20)
170 PRINT
18 PRINT "DENOMINATOR =";D

190 Y=FNY(K)/D
280 CALL F(K,Fr,Fi)
210 Wr=Fr-Y*Nr
220 Wi=Fi-Y*Ni I (19)
236 PRINT Wr,Wi
240 END
250 I

17
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260 SUB Fqk(K,E,L1,L2,Flr,Fli,F2r,F2i) (13)
270 DOUBLE N !INTEGER
280 Flr=Fli=F2r=F2i=0.
290 FOR N=-40 TO 48
380 CALL F<K+E*N,Fr,Fi)
310 IF ABS(N)=40 THEN PRINT ARS(Fr)+RBS(Fi);
320 C=COS<N*L1)
330 S=SIN(N*LI)
340 Flr=Flr+Fr*C-Fi *S
350 Fli=Fli4Fr*S+Fi*C
368 C=COS(N*L2)
370 S=SIN(N*L2)
380 F2r=F2r+Fr*C-Fi*S
390 F2i=F2i+Fr*S+Fi*C
400 NEXT N
410 SUBEND
428

438 SUB Ypqk(K,E,L1,L2,Y11,Y12r,Y~12i) !(14)
448 DOUBLE N !INTEGER
458 Y11=Y12r=Y12i=8.
460 FOR N=-40 TO 40
47e T=FNY<K+E*N)
480 IF ABS(N)=40 THEN PRINT T;
490 A=N*(Ll-L2)
508 Yll=Yll+T
510 Y12r=Yl2r+T*COS(A)
520 Y12i=Yl2i+T*SIN(A)
530 NEXT N
548 SUBEND
550
560 SUB F<K,Fr,Fi) !F(k)
578 Fr=Fi=8.
588 R=.71*K*K
598 IF A>100. THEN 618
600 Fr=EXP(-R)
610 A=.91*K*K+K
620 IF A>100. THEN 640
630 Fi=EXP(-R)
648 SUBEND
658
668 DEF PHY(K) !real YWk)
678 A=.63*K*K-K
688 IF 8>100. THEN RETURN 0.
698 RETURN EXP(-A)
700 PHEND

18
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ABSTRACT

The transmitted signal consists of K pulses separated in

time,frequency space so as to be nonoverlapping. In passing

through the medium to the receiver, each signal pulse is

subjected to fading. In particular, pulse pairs which are

closely spaced in time,frequency space can fade in a highly

dependent fashion, while those more widely separated can have

relatively independent fading behavior; that is, the transmitted

frequency-shift-keyed signal pulses undergo partially-correlated

fading of a very general character that contains both

deterministic components as well as random components. The

amplitude-fading statistics are not limited to be Rayleigh.

Additive zero-mean Gaussian noise, which is stationary over

the total signal transmission time and which has a flat spectrum

over the total signal bandwidth, is present at the input to the

receiver, in addition to the fluctuating signal pulses (when

present).

Receiver processing consists of matched filtering of each of

the K time-delayed, frequency-shifted pulse locations, followed

by squared-envelope detection, sampling, summation, and

comparison of this decision variable with a fixed threshold for a

statement on signal presence or absence.

The characteristic function of the decision variable is

derived in closed form for a very general model of partially-

correlated fading that subsumes Rayleigh, Rician, and noncentral

Approved for public release; distribution is unlimited.



Chi probability densities for the amplitude variate as special

cases. This characteristic function depends on the number K of

signal pulses, the number M of fading components, the

deterministic received signal energy in each fading component,

the average random received signal energy in each fading

component, as well as the received noise spectral density level.
Numerous special cases are pointed out and specific results are

given in detail.

An efficient expansion for the exceedance distribution, for

one of the cases, is listed and exercised for a representative

numerical example. Comparisons with earlier approximations

reveal them to have been pessimistic by several dB in ranges

considered typical for practical applications. Also, the effects

of correlated fading of the signal pulses are found to be not

overly detrimental until the normalized covariance coefficient of

adjacent pulses gets larger than approximately .5.
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Exact Detection Performance of Multiple-Pulse Frequency-Shift

Signals in a Partially-Correlated Fading Medium with

Generalized Noncentral Chi-Squared Statistics

INTRODUCTION

The transmission of a succession of time-delayed and/or

frequency-shifted signal pulses through a fading medium leads to

received waveforms which vary in amplitude and phase in a random

fashion and with possibly complicated statistical dependencies.

The evaluation of the detection capability of matched filter

processing and incoherent combination in such fading situations

and noise has been the subject of many studies over the years

[1 - 15]. Some of these efforts have been aimed at obtaining

approximations to the performance of the systems of interest,

while others have yielded exact results in selected special

cases.

Results for partially-correlated fading have been obtained in

[3;4;6;7;9;10;11;12;14;15]. In particular, in [4;6;10;11;12;14],

the characteristic functions of the decision variables have been

obtained in closed form for the case of partially correlated

fading of the received signal pulses with Rayleigh amplitude

statistics and additive Gaussian noise. The results in [12] are

approximate; however, the signal amplitude fading is not limited

to Rayleigh statistics there, but rather can have a Chi

distribution of an arbitrary number of degrees of freedom.

The case of independent signal fading in noise, but allowing

correlated clutter, was addressed in [13]. An extension of [12]

1
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to partially correlated signal fading in a system with

normalization was solved in an approximate fashion in [14].

Finally, a case of partially correlated signal fading with

ilayleigh amplitude statistics in the presence of noise and

K-distributed clutter was solved exactly in [15].

Here, we will give exact results for a fading medium whici

has both deterministic components as well as random components

with arbitrary covariance coefficients and additive Gaussian

noise. Also, frequency shift keyed (FSK) signals will be

allowed, with arbitrary (non-overlapping) occupancy in time,

frequency space. In addition, the signal amplitude statistics

will not be limited to Rayleigh, but will include the range of

possibilities inherent in the noncentral Chi distribution of an

arbitrary number of degrees of freedom. The end result is a

closed form for the characteristic function of the decision

variable that, although complicated in appearance, is amenable to

efficient computer evaluation of the detection characteristics by

means of a single fast Fourier transform (FFT). No matrix

inverses are required. However, a novel expansion technique for

the detection probability is derived which is efficient and

accurate; a program incorporating this expansion is listed and

exercised for several examples.

Extensions to a more general form of processor will also be

solved but not evaluated. In particular, the characteristic

function of the most general complex second-order form of

arbitrarily-correlated complex Gaussian random variables with

arbitrary means will be obtained in closed form.

2
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RECEIVER PROCESSING FOR A SINGLE PULSE

In this section, we will describe the basic model of the

single-pulse transmitted signal, the received signal with fading,

the received noise, and the receiver processing. The extension

to multiple signal pulses will be undertaken in the next section.

We presume that the transmitted real signal s(t) is

narrowband with low-frequency complex envelope s(t) superposed

on carrier frequency f0 :

s(t) = Rejs(t) exp(i2nfot)l . (1)

The transmitted signal energy is then

E d I ½s(t)]2  1 fdt Is(t)I2 (2)

where integrals without limits are over (--,+-). The time-

bandwidth product of the single pulse complex envelope s(t) is

arbitrary; thus, for example, a(t) could contain linear frequency

modulation along with rectangular or Gaussian amplitude

modulation.

The received signal waveform is

Refr s(t-td) exp[i2n(fo+fd)t + i']0 , (3)

where r is a (dimensionless) amplitude scaling, td is a time

delay, fd is a frequency shift, and e is a phase shift. Real

random unknowns r and e do not vary with time over the duration

of pulsed signal s(t). Delay td and shift fd are presumed known

at the receiver. The average received signal energy is, using

3
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(3) and (2),

r 2 dt Is(t)12 = r E . (4)

The received zero-mean additive noise waveform n(t) is

n(t) = Re~n(t) exp(i2rf ot)J , (5)

which is presumed stationary over the duration of the signal.

The spectrum of received noise n(t) in the neighborhood of

frequency fo is flat, with one-sided spectral level No watts/Hz.

The reference waveform employed at the receiver corresponds

to the matched filter to the transmitted signal, namely

A Rets(t-td) exp[i2n(fo+fd)t + i+]) , (6)

which utilizes knowledge of td and fd* The local reference level

A and local phase shift f in (6) are irrelevant to the processing

employed here; that is, the performance in terms of the receiver

operating characteristics (detection probability PD versus false

alarm probability PF) is independent of A and +, at least for

this case of one signal pulse.

We now define the two analytic functions

a(t) = r s(t-td) exp[i2n(fo+fd)t+ie] + n(t) exp(i2nfot)

A(t) = A s(t-td) exp[i2n(fo+fd)t+i+] , (7)

which are recognized as corresponding to the received waveform

and the local reference, respectively. The total output of the

matched-filter squared-e~ivelope detector to the received signal

and noise waveform is then given by

4
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y = If dt a(t) g*(t)12 =

=jr exp(ie) A J'dt Il.(t-td) 12 + A fat n(t) s*(t-t d) exp(-~i2n fdt)I 2

= 1f2 r A E + n r + i ni12MIp+ n r + i. n i12 , (8)

where we used (2) and defined the zero-mean processor output

complex noise variate

nr + i ni = exp(-ie) A f dt n(t) R*(t-td) exp(-i2nfdt) • (9)

The two covariances of the received noise complex envelope

n(t) are derived in appendix A; they are given by (A-8) and

(A-l1) as

n(t 1 ) n(t 2 ) = 0 , n(tl) n*(t 2 ) = 2 No 6(tl-t 2 ) . (10)

Use of these relations with (9) enables us to determine the two

averages

(n + i ni)2 =n -n +i2n n =0

r r 1 r i

(11)

In+ i ni 2 = n2 + n2 A dt IN2(t-td)I 2  4 N 0 A 2nr r 1 0oýt~d

where we also used (2). Combining the information in the two

lines of (11), there fwllows, for the two zero-mean real variates

nr and nil

n = n2 = 2 N A2 E = 2, nr ni = 0. (12)
1r 0 1

These results are independent of the parameters 8, td, and fd"

5
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Since noise input n(t) is Gaussian and operation (9) is

linear, real variates nr and ni are Gaussian with joint

probability density function

S2 +2"

p(n-,n-) 2 exp r 2 (13)r 2a 2a

From this result, we can derive the conditional exceedance

distribution function of matched filter output y in (8), for a

given value of random variable r. In terms of the two auxiliary

parameters p and a 2 defined in (8) and (12) respectively, we

have, for u > 0, exceedance probability

Prob(y > u) =Prob + n2 + n. > u

=[dx dy-i 2expr- (x -)2C 2na2 2 c2

-L Cdr' r' j dO' exp r - 2ur'cosO' + 2')
2ra 2 Jf 2a 2

Vu -n

Gor r r '2 + Pu
fu dr r' exp[- 2 2 (14)

CY 2 Vu 2 Ya

where C is the region exterior to a circle of radius Vu centered

at the origin of the x,y plane, and Q is Marcum's function [1].

The conditional probability density function of y, for the

same given value of amplitude scaling r, is

p(u) T - Prob(y > ui) = ~exp -1J. (15)
uu 2a2 2a 2 o0 2

6
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for u > 0. Therefore, the conditional characteristic function of

the squared-envelope detector output y, for given r, is

fc(;) = f du exp(i~u) p(u) = 12o2 f du exp i~u - +J2 P2 Ioo2

1 - exp i( 2J (16)1 - i&2a2 1 - i&2a2

where we used [16; 6.631 4]. The two important parameters here

were defined in (8) and (12) according to

p 2rA , a 2 =2NoA2 E (17)

Notice that, in this case of matched filtering, the detailed

behavior of complex envelope s(t) is not relevant; only the

total transmitted signal energy E is of consequence to the

conditional characteristic function (16) of output y in (8). The

results in (16) and (17) are independent of the particular value

of the medium phase shift e encountered in (3) or (7); this is

due to the processing method adopted at the receiver, namely

envelope detection of the matched filter output.

The cumulants of random variable y, for given fixed amplitude

scaling r, are available by developing the logarithm of (16) in a

power series in i&:

in fc () = - in(l - i&2o 2 ) + i&p 2 (i - i&2oa2 )- =

cc__ 22 j1
(=I j + P(2a2) . (18)

:7=1
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There follows immediately the j-th (conditional) cumulant of y as

X(i) = (j-1)! (2a2)j (1 + j for j 2 1 (19)2a 2

In particular, the first two cumulants are

X(1 ) = 2X + P 2 X( 2 ) = 4ac4 (1 + (20)

It is convenient to define a conditional deflection criterion

at the squared-envelope detector output y as the ratio of the

difference of means, with and without signal, to the noise-alone

standard deviation. That is,

d - XS+N(1) - XN(1) 2 r 2 E (21)

X (2) 2a 2  o

where we used (20) and (17). This conditional deflection depends

on amplitude scaling value r, of course. However, it is

independent of local reference values A and + in (6), as

expected, since performance measures should not depend on

receiver processor absolute levels or phase shifts, at least for

the case of a single pulse.
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RECEIVER PROCESSING FOR MULTIPLE SIGNAL PULSES

In this section we will generalize to the case where K signal

pulses are transmitted, all of which are nonoverlapping in time,

frequency space; the results derived in the previous section will

be used freely in the sequel. The transmitted energy in the k-th

pulse is Ek' where 1 K k • K. The k-th signal pulse undergoes

(dimensionless) amplitude scaling rk and phase shift ek in

transmission through the medium to the receiver. For each k,

random variables rk and ek do not vary with time over the

duration of the k-th individual signal pulse; this is a general-

ization of (3). The k-th local reference waveform employed at

the receiver utilizes constant amplitude scaling Ak and phase

shift +k' which can be chosen for best performance; compare (6).

It is now necessary to generalize the definitions in (7) to K

pairs of analytic functions, namely

a k(t) = rk Ak(t-td) exp[i 2lt(fo+fd)t+iek] + n(t) exp(i2nfot)

Ak(t) = Ak sk(t-td) expfi 2 n(fo+fd)t+i+k] , (22)

which correspond to the k-th received waveform and local

reference, respectively. A block diagram of the signal

processing employed at the receiver is depicted in figure 1. The

k-th signal complex envelope sk(t) in (22) includes the time

delay tk and the frequency shift fk associated with the k-th

pulse, in accordance with the FSK pattern employed at the

transmitter and known to the receiver. The K matched filter

outputs are envelope detected, squared, and then summed to yield

9
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aMatched Squared-
t Filter Envelope0()Detector

* Summer

aK(t) Matched Squared-
Filter Envelope
P K(t) IDetector

Figure 1. Block Diagram of Receiver Processing

output y, which is compared with a threshold for purposes of

declaring signal presence or absence. Observe that the matched

filter Ak(t) incorporates the local reference scaling Ak and

phase shift +k and therefore accounts for (complex) weighting

prior to the summation indicated in figure 1. The absolute level

of weights (Ak} does not matter and can be chosen freely;

however, their values relative to each other will affect the

detection capability of the processor in figure 1.

The energy in the k-th (real) reference waveform is, from

(22) and (2),

12 A2 223

Sj dt 10k0t)I =k Ek ,(3

where Ek is the transmitted energy in the k-th signal pulse. In

analogy to (17), we define the K parameters

"2 = 2 Ak k for 1 S k K. (24)

10
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The noise density level N is a common constant applicable to all

K pulses because the received noise is stationary over the total

time extent, and it is white over the entire frequency band of

the K received signals.

The K signals iSk(t)l are nonoverlapping in time,frequency

space, (t,f). Also, the received noise is Gaussian. Therefore,

the K output noise variables from the matched filters in figure 1

are statistically independent of each other; mathematically, we

are using orthogonality relation

J dt sk(t) s(t) = 0 for k P j . (25)

This is due to nonoverlapping, in time or frequency or both, of

all the component FSK pulses Isk(t)l, each with their individual

delay,shift tkfk. These observations, plus relations (8) and

(16), allow us to determine the conditional characteristic

function of output y from figure 1 in the compact form

K -1 K 2

fcM = I- 1 - i& 20 exp i& ) (26)c k=l kk=l I 2ai 2o

It should be noticed that this result is independent of the

set of phase shifts 10k encountered in transmission; see (22)

and (24). The reason for this development is the method of

receiver processing adopted in figure 1, namely envelope

detection of each of the matched filter outputs prior to

summation. However, (26) depends significantly on the amplitude

scalings Irk} through parameters {fk} in (24); explicitly, the

alternative form of (26) is

11
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KI K 4r2A 2E2
f T7= - i& 4 N A2  exp i& 1 - k 2 2

Sk=l k= 1 i 4 N A E
0 kk

(27)

Also, characteristic function (27) is independent of the receiver

set of phase shifts (+kl used in local references (22), again due

to the method of processing employed in figure 1. However, (27)

depends upon the receiver weights |Ak} in a complicated fashion.

In order to determine a reasonable method of selecting this seL

of weights, we consider the following development.

The (conditional) cumulants of system output random variable

y, for a given fixed set of amplitude scalings {rk), are

available by developing the logarithm of (26) or (27) in a power

series in i&. Reference to (18) and (19) immediately yields the

j-th (conditional) cumulant of y as

x(J) = (j-1)! k 2a 2 + j -•k for j 1. (28)
(11 2a21

k k

In particular, the first two cumulants of y are

X(K) = 2 + 2) X( 2 ) = 4 )z [a + 02 P . (29)
k=1 k=1

We can now define a (conditional) deflection criterion dK for

the output of the processor in figure 1, exactly as was done in

(21) earlier for the single pulse case. Substitution of (29) and

(24) then yields

12
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K K 22E2
Zv 2  XZ kr= k Ak Ek

dK k=1 k=1 (30)

cy T4 KL 4 -2
k=1 k=1

The absolute level of receiver weights {Ak} cancels out of (30);

however, the relative sizes of these weights does affect the

value of deflection dK attainable.

If the average power scaling of the k-th pulse, r2, is the

same for all k, that is,

r2.r2 for 2 1k <K (31)

then the average deflection of output y in figure 1 is, from

(30),

K
r- A rA (K•½
r k=1 1,K E21 (32)

K No K NA= k

k=1k k

with equality only if all the weights Ak are equal. This result

is not surprising, since there is already a built-in dependence

of matched filter Ak(t) on the transmitted signal energy Ek;

namely, (23) gives this energy as A2 Ek" Thus, we have the

conclusion that the "best" set of weights JAki, for the case of

equal power scalings (31) in the medium, is uniform when local

reference Ak(t) is chosen according to (22).

More generally, the average deflection follows from (30) as

13
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K--

Ak Ar o I k k k 2 2. (33)

K jK 4-2 S -jNrk
N = k k

with equality if and only if the receiver weights satisfy

A k= Ar k for 1 1k ýK. (34)

Scale factor A is arbitrary, reflecting the fact that the

absolute level of set JAki is irrelevant. It should be noted

that the "best" receiver weights in (34) are independent of the

transmitted signal energies lEk1. This is again due to the fact

that matched filter Ak(t) in figure 1 and (22) already has an

energy proportional to Ek; see (23).

Result (34) for the weights (AkI requires knowledge of the

average power scaling rk applied to the k-th pulse in

transmission through the medium. But these average power

scalings may be unknown or they may be independent of k, the

particular pulse number. In this case, a reasonable choice of

receiver weights is simply to take Ak = A for 1 • k I K. Then

the conditional characteristic function in (27) of processor

output y reduces to

K A2 2 2 r 2 1fc( = kT=1 - i& 4 NO A E k) exp ri4A ) Ek 2k=l k=l 1 - i& 4 N E A k

(35)

In the (usual) case where all the transmitted signal energies

in the K pulses are equal, that is, Ek = E for 1 1 k I K, then

14



TR 10041

the conditional characteristic function in (35) reduces to

fc(&) = 1 - i& 4 No A2 E) exp i&4A 2 E2 K r . (36)
1 - i& 4 NO 2 k=1

It is now very important to notice that the only way that the

amplitude scaling factors {rkI enter this characteristic function

is through the single quantity (sufficient statistic)

K 2
S = = rk (37)

k=1

which is the sum of all the power-fading variates rk on the K

transmitted pulses. This simplified result in (36) holds when

the following two reasonable conditions are satisfied:

Ek = E , k = A for 1 • k & K. (38)

That is, the transmitted signal pulse energies are all equal and

the receiver scalings JAk0 in (22) are all taken equal. This

particular case will receive most of our attention.

Since the receiver absolute scaling A in (38) is under our

control and does not affect detectability performance, we take,

for notational convenience and without loss of generality,

A2 = 1 . (39)2 No0

Then the conditional characteristic function in (36) of processor

output y in figure 1 simplifies to

f (1 - i2&) -K expI ii2 E o s] , (40)

15



TR 10041

where we used (37).

Another important observation must be made at this point.

Suppose the characteristic function of random variable S, defined

by (37), is known; that is,

fs(&) = exp(i&S) (41)

is known. Then the unconditional characteristic function f (&)Y

of processor output y in figure 1 is obtained by averaging (40)

over S and using (41); there follows

f (&) = (1 - i 2 &)-K fs( j & 2 (42)
Y Sl-i&N0

This compact form for the unconditional characteristic function

of processor output y depends critically upon being able to

obtain the characteristic function fs(&) in (41) of the power-

fading summation S defined in (37). Therefore, effort can be

concentrated on attempting to determine (41), either exactly or

by use of several low-order moments of S; see [17] for example.

Of course, in the process, the amount of partial correlation

between individual pairs of pulse power-fading variates Ir2I in

sum S will come into consideration. In any event, the

characteristic function of sum S in (37) is the major item of

interest; given this quantity, the processor output y in figure 1

is completely characterized in terms of its characteristic

function (42), at least when conditions (38) are satisfied.

The more general conditional characteristic function in (27),

with arbitrary fEk] and JAk , will be treated later, after we

have introduced a detailed model of the amplitude fadings Jrk}.

16
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CHARALfERIZATION OF FADING

We are interested in obtaining characteristic function fs(2)

of sum S of power-fading variates {rk) in (37); its use in (42)

will then yield the desired characteristic function f (&) ofY
receiver output y in figure 1. However, we must first concen-

trate on characterizing the fading which gives rise to sum S.

COVARIANCE COEFFICIENTS OF POWER-FADING VARIATES Iqki

Define the k-th power-fading variate qk as the square of the

amplitude-fading variate rk in (22):

=2
q = rk for 1 • k • K . (43)

The model of fading that we consider here is that power scaling

qk is a sample of a continuous fading process q(t,f), namely

qk = q(tk'fk) for I I k I K , (44)

where two-dimensional function of time t and frequency f,

M 2
q(t,f) - IC m(tf) + gm(t,f) J (45)

m=1

Sampling time tk and frequency fk correspond to the time-delay

location and frequency-shift location, respectively, of the k-th

FSK complex envelope signal sk(t) employed in (22).

The number of fading components in model (45) is M. Each

component contains a deterministic part cm(t,f) and a stationary

zero-mean Gaussian part gm(t,f). Without loss of generality, the

17
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nonrandom part satisfies

C m(t,f) a 0 for all m, t, f . (46)

Random parts g m(t,f)l of the joint Gaussian processes are

stationary in both t and f, with covariances

gm(t,f) gn (t-r,f-V) = Rmn (T,V) for 1 • m, n S M . (47)

(It is possible to generalize to nonstationary Gaussian

processes Igm(t,f)J; however, each covariance Rmn would then

be a function of the four variables T,V,t,f instead of just

differences T,V.) From (47), we have property

R nm(-r,-V) = R mn(r,v) . (48)

Fading model (44) - (45) does not constitute a multipath

medium but does mimic its net effect. Every transmitted pulse

Ak(t) undergoes just one common time delay td and frequency shift

fd' as indicated in (22), which are known and utilized by the

receiver. Rather, each signal pulse simply undergoes a different

phase shift ek and amplitude scaling rk in (22), the latter of

which is characterized through power scaling qk in (43) - (45).

The latter random variable, qk' is more general than non-

central Chi-squared because the random components [gm(t,f)} in

(45) can have unequal variances IRmm(0,0)1 and can be correlated

with each other; that is, we allow R mn(r,v) ? 0 for m # n.

The mean of power-fading variate qk is given by

M

q= 2 Cm(tk'fk) + Rmm(0,0) for 1 • k <& K, (49)
m=l

18
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where we used (44), (45), and (47). This quantity is independent

of pulse number k if all M deterministic components are zero, or

if they do not depend on t or f; that is, if cm(tf) is

independent of t and f for 1 - m I M. Since Ek is the

transmitted signal energy in the k-th pulse, then

2

Ek Cm(tk'fk) 2 Dkm = deterministic received signal energy

in m-th component of k-th pulse, (50)

M M
Ek L- cm(tkfk) = km M Dk = deterministic received signal

ml m=l energy in k-th pulse , (51)

Ek Rmm(0,0) = Ekm average random received signal energy

in m-th component of k-th pulse, (52)

M M
Ek > Rmm(0,0) = M E = Ek = average random received signal

m=!m=l m energy in k-th pulse . (53)

The alternating (zero-mean) component of power scaling qk is

then given by (44), (45), and (49) as

Sqk - qk

M 2 cm(tkfk)g(t,f)+ 2 (tf - Rmm(0,0). (54)
m=l mM mtfk mk'k

The covariance between a pair of power-fading variates is

Rkj = qk q9 ' (55)

while the covariance coefficient between qk and qj is

19
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* (56)
J kk Rjj)"

Thus, the fundamental calculation required for determination of

covariance coefficient Pkj is Rkj as defined by (55) in

conjunction with (54).

When we substitute (54) in (55) and use the fact that

Igm(t,f)} are zero-mean joint Gaussian processes, the first-order

and third-order moments involving Igm(t,f)} are zero, while the

fourth-order moment can be broken down into a sum of products of

second-order moments, leading to covariance

M
Rkj = 2 = R mn(tk-tjifk-fj) +

m,n=1

M
+ 4 I Rmn (tk-tjffk-fj) Cm(tk~fk) cn(tjifj) (57)

m,n=l

In particular, the variance of power-fading variate qk is

M
Rkk = = 2 = Rmn (00) +m,n=l

M
+ 4 R_ (0,0) cm(t f (58)

m mn= m ctk'fk) cn(tk f k)m,n=l

The covariance coefficient Pkj between qk and qj is obtained upon

substitution of general results (57) and (58) into (56).

20
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A large number of special cases can be obtained from the

general formulation of fading in (45) and (47). Below, we list

seven special cases that will occupy most of our attention in the

remainder of this report, and which will consistently be referred

to according to their number in the sequel.

SPECIAL CASE 1: Zero means fcm(tf))

c m(t,f) = 0 for 1 1 m I M . (59)

M

Rkj = 2 = Rmn(tk-tjifk-fj)
m,n=l

M
Rkk = 2 L Rmn(0,0) . (60)

m,n=l

SPECIAL CASE 2: Uncorrelated components |gm(t,f)j

Rmn(rv) = Rmm(T,v) 6an for 1 1 m, n S M . (61)

M 2

Rkj kmm2 ZZ (tk tj' fk-fj) +
m=l

M
+ 4 o Rmm(tk-tj,fk-fj) cm(tk,fk) cm(t,f) ,

m=l

M 2 M 2
Rkk = 2 ) R m(0,0) + 4 • Rmm(0,0) m(tk'fk) (62)

m=l m=l

It is very important to note that correlated fading still exists

between the received signal pulses; that is, covariance R in

(62) is not zero, despite uncorrelated property (61) in case 2.
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SPECIAL CASE 3: Zero means and uncorrelated components

Rkj =2 =L Rm(t k-tjifk- fj)

R kk =2 L__ R m(0,0)
m=1

MkjRM2 (

Pkj' . >M R 2 (0,0) (3

SPECIAL CASE 4: Uncorrelated components with identical

covariances IR m(r,v) I

R mn. (r,v) =Rll(T,V) S~ for all m, n .(64)

R kj 2M 2 1t-ifk +

+j 4llRtkjjffkfP

4 R (tk-tfk-f.) cm(tkfk ,f~Iljk m=1 lCmtij

R kk ' 2M R1 (0,0) + 4 R,1(0,0) > c M (t kf)(65)
m=1
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SPECIAL CASE 5: Zero means and uncorrelated components with

identical covariances

Rkj 2M R l(tk-tjffk-fj)

Rkk = 2M R i(O,0)

(R11(tk-t.,fk-fj) 2

Pkj = R1 1 (O,O) (66)

In this special case, the covariance coefficient between power-

fading variates qk = q(tk'fk) and qj = q(tj,fj) is the square of

the covariance coefficient between the amplitude-fading variates

gm(tklfk) and gm(tjifj); see (47). Due to the identical

covariances, (64), this latter covariance coefficient is the same

for every m in the range 1 1 m I M.

SPECIAL CASE 6: Uncorrelated components with proportional

covariances

This is a generalization of special case 4; it allows the

random components {gm(tf)I in (45) to have different strengths,

as might be encountered in a fading medium. (Note: In the

following, the constant r(m) is the average relative power

measure of the m-th random fading component; it must not be

confused with the random variable rk which is the amplitude-

scaling on the k-th signal pulse in (22).)
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Rmnl(TV) = R1 (lT,V) r(m) 6mn r (1) 1 . (67)

2 M 2

Ft = 2 Rl -tf-f f = r(m) +

MRl~k-j Rlfk-fj) k•- J r m)

+ 4 R (tk-tjif=k -fj - r(m) Cm(tk'fk) Cm(tj'fj)'
m=1

M2 2 Mc(mf (

R kk =2 RI(010) = r(m) + 4 R1 1 (0,0) 2-- r(m) c2
m=1 m-1

SPECIAL CASE 7: Zero means and uncorrelated components with

proportional covariances

Setting the means ICm(tif)j in (68) to zero,

2 M r(m)2'
Rkj =2 R l(tk-tjfk-fj) krf l

m=1

2 S (m) 2
R 2k 2 R r(''')2r

m=l

[Rll(tk-ti'f k- fi) 1(9Pkj R11(0,) (69

Notice, in this special case, that 1PkjI are independent of the

values of fr(m)), the relative power measures of the M random

fading components.
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CHARACTERISTIC FUNCTION OF POWER-FADING VARIATE q(tf)

The instantaneous power-fading process is, from (45),

M 2
q(t,f) = Z [Cm(t~f) + gm(tif)] =X X, (70)

m=l

where Mxl Gaussian random column vector

T
x cl(t,f) + g1(t,f) . . . cmpt,f) + gm(t,f)] . (71)

We now appeal directly to the very general result derived in

appendix B, for the characteristic function of a quadratic form

and linear form, and identify the quantities there according to

N = M, B = I, A = 0, E = ICl(t,f) . . . cM(tf)I

M M
C =Cov(X) = gM(t~f) gn (t,f)J [Rmn(OO)]M (72)

1 1

It is important to note that MxM symmetric covariance matrix C is

not a function of t,f, under the stationarity assumption (47) for

all M random processes {gm(tif)1.

According to (B-10), we must solve the standard

characteristic-value matrix equation

C Q = Q A , (73)

for MxM eigenvalue matrix A and normalized modal matrix Q, where

T

A = diag[IX -o X14  Q = [vi .-. VMI Vm = [yin ... vMJ
(74)

and Mxl column vector Vm is the m-th eigenvector with components
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Ivmn}1 , 1 • n S M. Then (B-18) with (74) and (72) yields

deterministic parameters

T M

Em - VT E = - v (t,f) M(t,f) a - 0 (75)
n=l mn Cn (tm •m(7' m

for I S m S M. We can now use (B-20) to obtain the

characteristic function of power-fading variate q(t,f) as

f q(&E) 1 - ) exp i& = i 1 2&X (76)
m=l m=l

The eigenvectors IV mI and nonzero means |cm(t,f)I enter this

result through the terms IEm(tf)I defined in (75). This general

result will be simplified, below, to the seven special cases that

were presented earlier in (59) - (69).

By expanding the logarithm of general result (76) in a power

series in i&, the cumulants of q(t,f) are found to be

Xq(P) = 2 (p-i)! + p £m(tif)J • for p ) 1 . (77)

For p = 1 and p = 2, these may be verified to equal the results

in (49) and (58); the pertinent matrix manipulations are

indicated in appendix B for the more general case where linear

form A # 0. The quantities {Xm ) are the eigenvalues of

covariance matrix C in (72), while parameters IEm(tf)) are given

by (75) in terms of eigenvectors {Vm| of matrix C and mean vector

E = E(t,f) in (72).
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SPECIAL CASE 1: Zero means; see (59)

Since Cm(tf) = 0, then £m(tf) = 0 from (75), and the

characteristic function in (76) reduces to

fq() = 1_ - i2&Xm)J. (78)

SPECIAL CASE 2: Uncorrelated components; see (61)

Here, from (72), we have

C = diag[Rl1 (0,0) • • RMM(0,O] • (79)

Then, the eigenvalue matrix A in (73) m, .t be identical to C, in

which case (73) becomes C Q = Q C, where C is diagonal. This

forces Q to be diagonal also; finally, normalization of Q yields

Q = I. There follows, from (74) - (76),

Vmn = 6 mn I Em = cm(tf) , (80)

and characteristic function

Mq~ = -c 2 c(t,f) I
f(&) = l1-i2&•R(O,0) exp i& ) 1i2i 7,0) . (81)

SPECIAL CASE 3: Zero means and uncorrelated components

Here, we simply set the constants in (81) equal to zero:

rM
f q(&) = FT(1 - i2 R.00 (82)
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SPECIAL CASE 4: Uncorrelated components with identical

covariances; see (64)

Now we use (64) on result (81) to get

-m/2 M
fq~* =(1-i2ER,1 (O,O)) exp[l.. 2 R 1 O) 2I'" ~~tf] (83)) 11 >fq(• = -2Rl0,) ep i2&Rll(,0) m=l

It is important to observe in this case that only the sum of the

squares of the means, c m(t,f)), matters in so far as the

characteristic function of power scaling q(t,f) is concerned.

SPECIAL CASE 5: Zero means and uncorrelated components with

identical covariances

Upon setting the means in (83) equal to zero, there follows

( -M/2

fq = I - i2& RII(0,0) - (84)

This special case is equivalent to [12; (A-21)] when we take the

parameter m there equal to M/2.
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SPECIAL CASE 6: Uncorrelated components with proportional

covariances; see (67)

From (67), there follows

Rmn(0,0) = RII(0,0) r(m) 6mn r(I) - 1 . (85)

Use of this relation on (81) yields characteristic function

LI M- [ Mm c 2 (tf)

f (2) = l R1m(0,0)r(m) exp i& L-
q 1 ' li2&Rll(0,0)r(m)1"

(86)

The cumulants of power scaling q(t,f) can be obtained by

expanding the logarithm of characteristic function (86) in a

power series in i&; there follows

Xp(P) P M p p-i M p-1
-I =RII(0,0) = r(m) + p R1 I(0,0) = r c (t,f)

(p-i)! 2 P- 1 m=1 mini m

for p k 1 . (87)

SPECIAL CASE 7: Zero means and uncorrelated components with

proportional covariances

Setting the means in (86) to zero, we have

fq(&) = 1 - i2& R1 1 (0,0) r(m)I. (88)
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Actual numerical examples displaying typical probability

density functions of power-scaling random variable q, for a

variety of different parameter values, will be presented in a

later section.
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CHARACTERISTIC FUNCTION OF POWER-SUM VARIATE S

The power-sum variate S is given in (37) and (43) as the sum

of the power scalings qk = q(tk'fk) over the total of K pulses

transmitted and received:

K K M 2
S > q(t kf) = =E = IZ [m(t k f k) + gm(tkIfk)l (89)

k=1 k=1 m=r

where we used (44) and (45). This double sum can be recognized

as a quadratic form in KM correlated nonzero-mean Gaussian random

variables. Therefore, the general approach in appendix B can be

used directly to find the characteristic function of S for any

statistical dependencies between the M zero-mean Gaussian

processes {gm(t,f)1 and any layout of the K points itklfk} in the

time,frequency plane. In order to realize form (89), we identify

variate q = S, constant N = KM, and matrices B = I, A = 0 i-

appendix B. Mean column vector E in (B-i) is KMx×, while

symmetric covariance matrix C is KMxKM. Then (B-10) becomes the

standard characteristic-value matrix equation (18; section 1.13]

C Q = Q A , C = [gm(tk,fk) gn(tjvfj)] = [Rmn(tk-tjifk-fj)I1 (90)

where KMXKM modal matrix Q - [V 1 . . . VKM] from (B-il). Also,

there follows from (B-18),

E _ QT E , n VT E for 1 S n < KM ; an = 0 . (91)-- nn

The characteristic function of sum S in (89) then follows from

(B-20) as
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[KM KM½ 2

f& = [F141 - i2&Xn)I exp i& =_ n ~ ~ (92)

This general result will now be specialized to the seven cases of

particular interest here.

SPECIAL CASE 1: Zero means; see (59)

When cm(t,f) = 0 for 1 • m • M, then mean vector E is zero,

meaning that its components fcn} in (91) are zero. The result in

(92) then reduces to

-KM
fs(&)= M - i2XJn J (93)

Only the KM eigenvalues of KMxKM covariance matrix C of the KM

random variables {gm(tkfk))I need to be evaluated in this case.

SPECIAL CASE 2: Uncorrelated components; see (61)

From this point on, we shall be interested in the more

restricted case where component Gaussian process gm(tf) is

uncorrelated with (independent of) process gn(t',f') for m # n,

regardless of the values of t,f and t',f'; this case was also

considered earlier in (61). This will probably encompass most

situations of practical interest; furthermore, it still allows

for correlated fading between the K received signal pulses. That

is, covariance Rjk in (62), between power scalings qk and qj,
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need not be zero, despite uncorrelated property (61) between

components {gm(t,f)} in this special case 2.

In this case, a simpler and more direct approach is possible

and is adopted. We begin by expressing (89) as

S= )- S(m) (94)
m=l

where we have defined the M random variables

K 2

S(m) : [cm(tk,fk) + gm(tk,ff)0 for 1 m S M . (95)
k=1

This superscript m notation is adopted in order to readily

distinguish the fading component numbers, 1 < m i M, from the

time,frequency signal pulse numbe-s, 1 : k I K; see (45) versus

figure 1.

Now, it is important to observe, for this special case 2,

that these latter M random variables 1s(m)} are statistically

independent of each other, allowing us to develop the character-

istic function of sum S in (94) in the finite product form

M

fs(&) = I-[ f(m)(. ) , (96)

m=l

where the m-th characteristic function is given by average

f(m)(&) = exp(is(m)) , (97)

in terms of quadratic sum S(m) in (95).

In order to ascertain the characteristic function of sum

S(m), we define Kxl Gaussian column vector y(m) according to

33



TR 10041

y(m) = Cm(tiffl) + gml(t 1 fl) . . . Cm(tK,fK) + gm(tK,fK)T. (98)

Then, S(m) in (95) can be written in the quadratic form

s(m) = y(m) y(m) (99)

We now appeal to the general results in appendix B and identify

the quantities there according to q= S(m), N = K, and

B = I , A = 0 , E = Em = y(m) [Cm(ti,fl) . . . Cm(tK fK)I I

C = C(M)= cov(ym)) = [gm(tk, fk) gm(tj,fj)JK= [R. mtk-tjifk-f j ]

(100)

The K diagonal elements of matrix C(m) are all equal to Rmm(0,0).Thei

According to (B-10), we must now solve, for each value of m

in the range 1 1 m S M, the KxK characteristic-value equation

c(m) Q(m) = Q(m) A(m) , (101)

for KxK eigenvalue matrix A(m) and corresponding KxK normalized

modal matrix Q(m), where

A(m) = diag xIm) . . . X) , Q(M [ . . . ,()

T

vkm) [Vi) . . " (102)

and Kx1 vector Vým) is the k-th eigenvector with componentsk

1 i j < K. Then, (B-18) with (102) and (100) yields

E(m) v~m) E(m)= K v() c (t.,f) ,=a(m) = 0. (103)
k k = kj in3 k
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We can now use (B-20) to obtain the characteristic function

of variate S(m) in (99) as

f(m)()= ( - i2 Wx m) exp i& .k (104)
k=l k k=l 1 -i2() 0

The desired characteristic function of power-sum variate S in

(89) is then given by (96), applied to (104):

2
fM K M K EiM)

f s FT7 T71 - i2&xim)1 exp i& .

km=1 ml k=l ] i2&im)1

(105)

This characteristic function of sum S is a very general

result, applicable to the case of uncorrelated components

Igm(tf)); however, it does require the solution of M matrix

equations of the form of (101), each matrix being of size KXK.

Nevertheless, this approach is significantly simpler than solving

the one large KMxKM matrix equation (90).

SPECIAL CASE 3: Zero means and uncorrelated components

When the means {cm(tf)} are zero, (103) yields E(m) = 0 andk

the characteristic function in (105) reduces to just the product

f [&) T T F(1 - i24).(106)
m=l k=5
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Eigenvalues 11,..., are found from KXK covariance matrix1 'K

C(m) in (100); this solution must be repeated for 1 S m S M.

SPECIAL CASE 4: Uncorrelated components with identical

covariances; see (64)

Here, covariance matrix C(m) in (100) is independent of m; in

particular, we now have the single KXK covariance matrix

K
C =[Rll(tk-tj'fk-fj)JK * (107)

This leads to solution matrices Q(m) and A(m) in (101) which are

also independent of m; that is, (101) becomes the single KxK

characteristic-value matrix equation

C Q = Q A . (108)

Thus, the eigenvalues and eigenvectors in (102) are independent

of m. However, the constants 1 1km)1 in (103) still depend on m

through their dependencies on means Icm(t,f)1; that is, from

(103),

E m) = VT E(m) K -= Vk cm(tjifj) . (109)

j=1 .k 19

The collection of all these conclusions enables us to reduce

the characteristic function (105) of S to the compact closed form

K )1~-M/2K hk

fs(&) = IT - i2EXk) exp i 1 - i2&Xk (110)
[k=l" k=l
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where we defined the K constants

M 2

hk = Z-Z m for 1 1 k S K . (111)
k= km=l

If the number, M, of components in fading model (45) happens to

be even, the calculation of (110) does not involve a square root,

thereby further simplifying its numerical evaluation. The

collapsing of the KM constants {Jm)) into a smaller set of K

constants, by means of the sums of squares in (111), is the

analog of the result in (83) for an individual fading variate

q(t,f) in special case 4.

As a special subcase here, suppose that the M deterministic

components cm (t,f)) in (45) are independent of t and f; that is,

Cm(tkfk) = cm for 1 < k S K . (112)

This means that the constants are independent of the locations

Itk,fkl of the signal pulses in the t,f plane, although they can

still depend on the component number m. Then, there follows from

(109) and (111),

Cm K Vk = c vk
j=1 l =

That is, the characteristic function of sum S in (110) depends on

the constants 1Cm ) only through their sum of squares. This

latter property holds true only when special subcase (112) is

valid.
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SPECIAL CASE 5: Zero means and uncorrelated components with

identical covariances

Upon setting the means Icm(tf)}% to zero, it is seen from

(109) and (111) that characteristic function (110) reduces to

f 5(&) = ITKT (l - i2 & I 
(114-M/2

Now, only the K eigenvalues IXk1 of KxK covariance matrix C in

(107) need to be evaluated. This result in (114) is essentially

identical with (10; (D-14)]. For the special case of M = 2, this

same result for the characteristic function of S can be shown to

follow from [11; (20)].

SPECIAL CASE 6: Uncorrelated components with proportional

covariances; see (67)

From (67) and (100), we find that KXK covariance matrix

C(m) = r(m) C , where C = [Rll(tk-tjlfk-fj)] , (115)1

and r(I) = 1. Then (101) yields

Q(M) (m) Q r(,) A , (116)

where Q and A are the solutions to the single KxK characteristic-

value matrix equation

C Q = Q A . (117)
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We now refer to (103) to get constants

(m) T (m) K
E k Vk E = . Vkj Cm (tjrf . (118)

Then (104) yields the characteristic function of S(m) as

[k *2=(llfl ex-• i• _ii (rm) 2  ]
f(m)(&) = i2kr(m) exp i k . (119)

~lr) I I k=1 1- i2Ak rm

Finally, (96) gives the characteristic function of sum S as

fs() = [T TT(I - i2& Xk r(m)m k

2

X exp i& = =- (120)
m=1 k=1 I - i2& A k r~m

Here, even if the M deterministic components Icm(tf)l were

independent of t and f, as previously assumed in (112), the

characteristic function of S would not depend simply on the sum

of squares j cm. To see this, substitute the left member of

(113) in (120).

SPECIAL CASE 7: Zero means and uncorrelated components with

proportional covariances

Set the means (cm(t,f)I to zero in (118), at which point

the characteristic function for S in (120) simplifies to

39



TR 10041

f [ M) T T-T 1 - i2& Xk r(m) (121)

Im=l k=l

Eigenvalues IX k are the diagonal elements of eigenvalue matrix A

in KxK matrix equation (117), where covariance matrix C is given

by (115).

CUMULANTS OF SUM S

For some purposes, such as approximating the probability

density function or exceedance distribution function of S, the

cumulants are useful; see, for example, [17]. By expanding the

natural logarithm of the general characteristic function in (92)

in a power series in i&, the cumulants of S are readily found:

Xs(P) - (p-l)! 2 p-1 = - Xn + p for p Z 1 . (122)
n=l n

The cumulants for the seven special cases considered above

could also be derived. However, we will only present the results

for special case 6, namely uncorrelated components with propor-

tional covariances; see (67). Again, expanding the logarithm of

characteristic function (120) in a series in i&, there follows a

slight simplification of (122) for the cumulants of S;

M )p K
Xs(p) = (p-l)! 2 P-1 = r(m) = XP +

m=l k=1

-1M K (M r~ ~P-1 (m) 2+ p! 2P K £k for p Z 1 . (123)

m=i k-i
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CHARACTERISTIC FUNCTION OF PROCESSOR OUTPUT y

With the characteristic function of sum S in hand, we can now

return to the desired result (42) for the characteristic function

f Y() of processor output y, when conditions (38) are satisfied.

Substitution of general result (92) into (42) yields

()=(1 - i2&)(M-1) T7 1- i2&(1 N+ n)
1n=1 0

SKM __-I 2
exr n (124)

SPEIALCA Ex i & Z Roen; = e (59I

yin=1 1 - i2& 1 + LE k
N0 n

By expanding the logarithm of (124) in a power series in i&, the

cumulants (p) of processor output y are found to be given by

S(p) = KM 1 + 29 rk P - KM4E 2 - K(M2)
(p-i)! 2n=1 Nn N nNnjn

forp k 1. (125)

SPECIAL CASE 1: Zero means; see (59)

Upon setting means jc m(t,f)I to zero in (124), the constants

I n j defined in (91) become zero and (124) reduces to

M G - ( M-1) rKM 1+Z 2KT71- i& 16

only the eigenvalues iXn I of KMxKM covariance matrix C of the KM

random variables Igm (tk~fk) ) need to be evaluated in this case.
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SPECIAL CASE 2: Uncorrelated components; see (61)

The comments in the bottom paragraph of page 32 and the

sequel are relevant at this point and should be reviewed. For

convenience, we will utilize a normalized version of covariance

matrix C(m) defined in (100):

c(m) = C(m) R=(t k-tfk-f') K

Rmm(0,0) 1 Rmm(0,0) (127)

The corresponding eigenvalue matrix A(m) of normalized KXK

covariance matrix C(m) is then given by

A~)= A(m) 1 L 18
A(m) = R diag[Xjm) . . . X(m)] (128)- R~mm(00

in terms of eigenvalue matrix A(m) in (101), which now becomes

C(m) Q(m) = Q(m) A(m) . (129)

Normalized modal matrix Q(m) is unchanged from (101). The

relationship between the eigenvalues in (102) and (128) is

x(m) = X(m) Rm, (130)
k -k '=OO

When we employ special case 2 result (105) in (42), the

characteristic function of processor output y is given by

f M() = (1 - i2&1) [7 T 7 - i2& 1 + NE k
rnI-i k=li o

I EM K E•m) 2

×Aexp i 2 EKk (131)
2 - i2& 1 + Io (m)
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However, a combination of (130) and (52) yields

2E x(m) = 2E m(i) = 2lm -m) (132)
N =k R (0,0) =k N

where we have taken note that the same signal energy E was

transmitted on all K pulses; see (38). That is, Elm is the

average random received signal energy in the m-th component of

any one of the pulses. The quantity 2EIm/NO is a measure of the

average random received "signal-to-noise ratio" in the m-th

component of one pulse. At the same time, from (103),

2E (M) = .(rn) (2E (133)
N k 2 [K Ij N~ti~)~0 E 3=I

But since cm(tf) Z 0 without loss of generality (see (46)), we

have

(29)" (2E ½ D
Cm(tjifj) INo mjtN) = f No - 1 (134)

where Dim is the deterministic received signal energy in the m-th

component of the j-th pulse, as defined in (50). Then (133) can

be expressed as

2 K 2 2
2E E(m) V ) [2D N 1 E(M) ()(135)
N k k (N 0 J -::k(15
0 =1

The quantity 2 Djm/NO0 is a measure of the received deterministic

signal-to-noise ratio in the m-th component of the j-th pulse.
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Upon combining these definitions, (131) Is modified to

f (1) K(½- i2&) M-1) K - i21 + 2 Em()

i2E T7 IT71 N +-k -lm=l k=o

M K 
-(m) 2

x exp i& = mk (136)
m=l k-i 1  i2&4l + XE m

0 "

Here, eigenvalues are those of the KXK normalized

covariance matrix C(m) defined in (127). The constants _(m) are

given, according to (135), by

_=(m) K= (kj) (137)_k=Z - v k' No "(1 7

The cumulants of processor output y in this case are given by

X Y(P ) M K + 2 k m) p +
(p-l)! 2P- m=l k=N o

M2Em p-1I
+ k-l + N (m))P -(m) - K(M-2) for p k 1 . (138)

m=l o~

SPECIAL CASE 3: Zero means and uncorrelated components

When means {cm(t,f)I are zero, then (50) and (137) yield

Dm 0 and _(m) = 0, thereby causing (136) to reduce to

K[hM-=) M K 2Elm _'(m))]-N

fy(&) = (I - i2&)K(7M-) 1 I - i2 & 1 + .(139)
tm=l k=1N 0
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SPECIAL CASE 4: Uncorrelated components with identical

covariances; see (64)

Now, normalized covariance matrix C(m) in (127) is

independent of m; in particular, we have the single KxK

covariance matrix

SRI00C f~ll'tk-t'fk-f'
= = R1 1 (0,0) 1 (140)

This leads to solution matrices Q(M) and A(m) in (129) which are

also independent of m; that is, (129) becomes the single KxK

characteristic-value matrix equation

C Q = Q A ; A = A/R 1 1 (0,0) = diag[,L1 ... ,XK] . (141)

Thus, the eigenvalues in (128) and the eigenvectors in (102) are

independent of m. However, the constants clm) in (137) still-=k

depend on m through their dependence on deterministic received

signal energies (Djm ; that is, from (137), now

(Mn) =2ý*j K (142)1
j=1 k N0 J(12

Also, from (52), (38), and (64), we now have

EFm = E1 Rmm(0'0) = E RII(0'0) = Ell , (143)

which is the average random received signal energy in one

component of one pulse. (In this special case 4, we have the

alternative result E1 l = EI/M from (53).)
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The collection of these conclusions enables us to express the

characteristic function (136) of processor output y in the closed

compact form

f i() = ( - i2)K(M-) IK1 -i2 + -X H x

K hk

x expi• k 2E (144)
k=l 1 - i2t41 + -iik

N No

where we defined the K constants

M 2m M IJK (2D.I2

hk= ) E Vk N for 1 • k < K . (145)
M-1m=l 3=10

Use of (142) was made here. The cumulants of output y are now

) = M 1 + N _k)p+

(p-i)! 2P-1 koo 0

K 1.+2Eoo p-I - K(M-2) for p Z 1 . (146)

k=1 o

As a special subcase, suppose that the M deterministic

components (cm(t,f)j in fading model (45) are independent of t

and f; see (112). Then, from (50) and (38),

-~ 2 -2.Dkm = Ek c (tk/fk) = E cm =Dl , (147)

where Dlm is the received deterministic signal energy in the m-th

component of any one of the pulses. This result allows the

constants in (145) to be simplified to
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Ml z 2D 1m) K V) 2  (148)

Thus, in this special subcase, the constants 1hkI depend only on

the sum of the received deterministic signal energies on all the

components.

SPECIAL CASE 5: Zero means and uncorrelated components with

identical covariances

Upon setting the means c m(t,f)I to zero, it follows from

(50), (145), and (144) that the characteristic function of

processor output y is

f2K(s-) I K
= (1 - i2 & ) f7 - i2&f1 + -Xk) . (149)

[ k=1l o

Eigenvalues X1I,...,K correspond to KXK normalized covariance

matrix C given by (140), while E11 is the average random received

signal energy in one component of one pulse. This exact result

replaces the approximation in (12; (8)].

In the special case of M = 2, that is, two components in

fading model (45), the result in (149) reduces to

=yI K 1 - i22E1 + N- - -H 1  (150)
(L) = 7 N -kJk)

k=l 0 11

This expression agrees with (11; (24)], except for a scaling of

output y by a factor of 2. There was no need here to evaluate

multiple integrals as encountered in [11; (21) - (22)].
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SPECIAL CASE 6: Uncorrelated components with proportional

covariances; see (67)

If we combine the general relation in (42), for the

characteristic function of processor output y, with the

characteristic function in (120) for the sum S in this special

case 6, we obtain the form

f (I - i2&)KMK(-M) T7 lF[ 1 - i2& 1 + Xo r X

2E M K E(m)2

x exp i R = - (m) (151)

o m=l k=1 1 - i2& 1 + XE k r M
N0k

Now, from (67) and (100), we find that KxK covariance matrix

C(m) = r(m) C , where C = [Rll(tk-tj,fk-fj)] (152)

and r( 1 ) = 1. Then (101) yields

Q(M) = Q , A(m) = r(m) A (153)

where Q and A are the solutions to the single KxK matrix equation

C Q = Q A . (154)

Now, define normalized covariance matrix C as in (140), with

corresponding matrix equation and eigenvalue matrix A as in

(141). Then the eigenvalues are related according to

'k =k R1 1 (0,0) ' (155)

leading to result
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2Ex (in 2E2E 1  2E2E X r(m) =2E R r(m) 11 Xk r(m) 1 2 Elmkr -•R100• O=N k' ,(156)
N0 kN0 1(1)N0 -kN0

upon use of (38), (52), and (67). The quantity Elm is the

average random received signal energy in the m-th component of

any one pulse. Also, from (135) and (137),

E (i) ( = E ) 2 o ' (157K
N 2 -k 2-k) IIIIIkj N-' 17

since normalized modal matrix Q is independent of component

number m; see (153). Use of (156) and (157) in (151) yields the

characteristic function of processor output y in the desired form

f(•) = (1 - i 2 •)K(½s-) 1 KI - i2& 1 + 2Nim " )1}½ X
Im=1 k=1o

M K m)
x exp i&=• - 2E-m (158)

m=l k=1 1- i2(1 + lm (18

This result is a slight simplification of (136) which allowed

uncorrelated components of arbitrary covariances; thus,

eigenvalues 14k1 and eigenvectors IVkI are independent of m here.

Furthermore, (158) simplifies to the result in (144) when the

covariances of the random fading components fgm(t,f)l in (45) are

identical; see (64).

The cumulants IXy(P)1 of processor output y are found by

expanding the logarithm of (158) in a power series in i&:
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X Y(p) M E K= 2Em pk= ý 1 + N 4)p+

(p-l)! 2P-1 m=1 o1 0

M K, 2Em p-i m 2
+ p =--= 1 + -- k- K(M-2) for p Ž 1 . (159)m=l k1 No0-

SPECIAL CASE 7: Zero means and uncorrelated components with

proportional covariances

When we set means Icm(tf)] to zero, the characteristic

function in (158) simplifies to

fy(E) (1 - i2•1K(hM-1) L Ki1 - i2& I + .1m X (160)
lm=l k=10o

For purposes of review, the quantity Ekm is the average

random received signal energy in the m-th component of the k-th

pulse, while Dkm is the received deterministic signal energy in

the m-th component of the k-th pulse; see (50) and (52) as well

as fading model (45) - (47). Eigenvalues [ k4 correspond to

normalized covariance matrix C in (140), while coefficients IVkjl

used in (157) are the corresponding eigenvectors' components; see

the KxK matrix equation in (141), which yields eigenvalue matrix

A and normalized modal matrix Q.
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In the sequel to (42), it was noted that the more general

conditional characteristic function of y in (27) would be treated

once the fading model had been described. This latter situation

with general receiver weights JAkI and transmitted signal

energies JEk1 is considered in appendix C. In particular, the

unconditional characteristic function of processor output y is

derived for general correlated fading components Igm(t,f)i and

then specialized to the case of uncorrelated fading components.
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EXAMPLES OF PROBABILITY DENSITY OF POWER-SCALING q(tf)

In an earlier section, the characteristic function of

power-scaling variate q = q(tf) was derived for fading model

(45), yielding general result (76). This result was then

simplified for the seven special cases noted there. In this

section, we will present some numerical examples of typical

probability density functions of q and thereby illustrate the

generality and variety of fading model (45).

The only case we will consider in this section is where the M

random components Jgm(tf)j in (45) are uncorrelated with each

other and have proportional covariances. This is special case 6;

see (67). Also, for notational convenience, we consider the

normalized (pcwar) random variable

q _q (161)
R11(010) 2 1

where

a 2 = g 2 (tf) = RMM(0,0) = Rj,(0,0) r(m) for 1 1 m _,ý M . (162)
m M

Here, we used (47) and (67). Then, from (86), the characteristic

function of random variable + is

)1_ý 2 r(m)

T7 m
f + (Z) = f q(R,1(0,0)) 1-i2&r(m) exp (m)m=1 m=1 1-i2&r

(163)

where we defined (dimensionless) normalization constants
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cm Cm(t, f)

tm = CM m for 1 S m M. (164)
am R M(O,0)h

For M = 1, the general result in (163) simplifies to

21
f#(•) (1 ( - i2&)- exp - 1 (165)

for which the corresponding PDF (probability density function) is

p,(u) = (2nu)-½ exp[_ Iu + ti2)] cosh(hV'u) for u > 0 . (166)

The amplitude-scaling variate, rk =q from (43), has the

corresponding PDF for normalized version

e r = = V+ , (167)

1 R 1 0 1O0)

namely

Pe(u) = 2 u p,(u 2 ) [2f) exp[- I[u 2 + h2)] cosh(hlu) for u > 0

(168)

This PDF is displayed in figure 2 for h, = 0(.5)3. At the origin

this PDF is finite and nonzero, with value (2/u)½ exp(-ý12/2),

indicating the possibility of occasional deep fades (unless h, is

large). As parameter 41 gets large, this PDF approaches

Gaussian; in fact, directly from (168) and figure 2, we obtain

pe(u) - (2n)1- exp [- [u - 1l)2I for ,> (169)
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The corresponding PDF for normalized power-scaling variate

* = q/R 1 1 (0,0) - q/a2 was given in (166) and is plotted in figure

3. It is seen to possess a substantial cusp at the origin, which

behaves as (2nu)-½ exp(-t12/2). This is the most severe case of

deep fading that model (45) can yield, namely for M = 1.

When M = 2, that is, two components in fading model (45), the

characteristic function in (163) reduces to

f÷•) [I i2l- I 2• r())•it ý i2 2 r (2)
= - i2) - - i2t r(2) exp 1 - + 2

1 - i2 1- i2& r(2)

(170)

However, instead of Fourier transforming this result, the PDF

of * is best found by reverting to definition (45), namely

q (c 1 + gl)2 + (c 2 + g2 ) 2, and performing the probability

integrals directly in the g1 ,g 2 plane. The result is

p (u) 4nr(2))½f dt exp[- I(C 2 + S2 )] for u > 0 , (171)

where auxiliary functions

c SU cos(t) - , S (' 2) sin(t) - h2 " (172)

As a special subcase here, for M = 2, let r(2) = 1; that is,

let both random components {gm(t,f)} have equal power. Then

(170) yields characteristic function
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f (1 - i2t)- exp[i 2 (173)

where constant

c2 + c22~ ý2 + 2 1- -2- for K=2 .(174)

I 1i '2 -R 11(OO)

The corresponding probability density function for +' is

P+(u) = I ('11(u) -x [ Iu + ý21for u > 0 . (175)

That for e = V+4 follows immediately as

pe,(u) = u I0(tiu) exp [_ 1(u2 + h12)1 for u > 0 . (176)

The PDF in (175) is displayed in figure 4. Now, the origin value

............ ;...... ........ ........... . .......................... . . . . . . . . . . .

2 L 3f

Figure 4. PDF of q/a 2 for M = 2, r (2) 1
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is finite, namely .5 exp(-h 2 /2), in contrast with figure 3 for

M = 1. The cusps that were in figure 3 are now absent for M = 2.

When M = 2 but r(2) ? 1, a closed form like (175) is not

available for the PDF of 4. Instead, we must revert to the

general relation in (171) - (172) and perform the numerical

integration for each set of parameter values of interest. An

example for r(2) = 1/2 and h2 = hl is given in figure 5, and a

second example for r(2) = 1/2 and h2 = h1/ 2 is given in figure 6.

A common feature of all these densities is the finite nonzero

values at the origin. That is, deep fades are still common for

fading model (45) when M = 2.

For larger M and completely arbitrary parameters, it is

necessary to numerically Fourier transform general characteristic

function (163) in order to determine the PDF of 4. However, for

the special case where

M is even and r(m) = 1 for 1 m M, (177)

then (163) reduces to

iM/2 2
f (1 - i2Z)-M/2 exp[_i 2 1 ' (178)

where constant

2 M 2
2 -m (179)

m=l

The corresponding PDF of 4 is then

1 [uN_ ex+ ½Is h ]

p.(u) = iN(lu) exp[- (u+ 2 for u > 0 , (180)
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Figure 6. PDF of q/a for M = 2, r (2 ) 1/2, 2=
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where N = M/2 - 1. This reduces to (175) for M = 2.

The PDF for 8 = if follows as given by the rule given in

(168), namely

po(u) = u (Rj IN(hU) exp[-_ I(u 2 + h2)] for u > 0 . (181)

This reduces to (176) for M = 2.

Two examples of PDF (180) for random variable + are displayed

in figure 7 for M = 4 and in figure 8 for M = 6, respectively.

The former PDF is zero at the origin, while the latter is zero

and has zero first derivative at the origin. Thus, deep fades

are less likely for the larger values of M in fading model (45).

A general procedure for determining the probability density

function p,(u) of random variable + from characteristic function

f +() in (163), for arbitrary M, {r(m) ), {tm), is presented at

the end of appendix D. It employs some efficient recursions for

fast and accurate numerical evaluation of p*(u).
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Figure 7. PDF of q/cr2 for M = 4, r(m) = 1 for all m
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Figure 8. PDF of q/2 for M = 6, = 1 for all m
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PROBABILITY DISTRIBUTION OF PROCESSOR OUTPUT y

The characteristic functions fy () of processor output y,

under a variety of special cases, were derived in an earlier

section; in particular, see (124) - (160). Although these are

compact closed forms, they can encounter computational problems

if we attempt to directly utilize Fourier transforms to determine

the corresponding probability density functions and exceedance

distribution functions. In particular, since the characteristic

functions decay only as &-K as & -• , truncation error can become

a significant problem, especially for small K, the number of

signal pulses.

EXPPXSTi)N FOR DISTRIBUTION FUNCTION

In appendix D, series expansions for f (&) and the

corresponding probability density function p y (u) are derived in a

form which involves only positive expansion coefficients and

terms. Furthermore, efficient and accurate recursions are

developed for the evaluation of the coefficients, the probability

density function, and the exceedance distribution function.

As an example of the general procedure, the results for

general characteristic functions (136) and (158) are summarized

here. Define respectively, for 1 • m < M, 1 • k • K,

2Elm 2Elm (k 2
T (m) or T N X emk . (182)

mk N -k mk N0

(136) '158)
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Then, the exceedance distribution function of processor output y

is given by (D-16) as

CIO
Prob(y > u) = F = g H (u) for u > 0 ,(183)

p=0 P K+p-1 2j

where the quantities required are found in the following fashion.

T7 ,7ý - . (1841
m-l k=l"

1 M K emk
a= o 71 + Tm=l k=l mk

M K TP-1  f~ ek
Smk mk for p 1 , (185)

m=l k=l (1 + Tmk)

g= exp(a0 ) 1 n an gpn for p Z 1 (186)go = ex~ao) ' p p n=l g-

n k
H (x) = exp(-x) k=0 x for n k 0 , x Z 0 . (187)

n k=0 k!

Since the eigenvalues of a covariance matrix can never be

negative, it is seen from (185) that all the a p) are

nonnegative, with the exception of a0 . However, a0 is used only

once in (186) to generate a positive go, while the recursion in

(186) for {gpI utilizes only nonnegative quantities. Thus, all

the coefficients {gpI and scale factor F in (183) are

nonnegative. The function Hn (x) in (187) is obviously positive
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for x 2 0, thereby guaranteeing that no negative terms will

appear in expansion (183). Furthermore, there is a very

efficient xecursion for the {Hn(x)); see (D-18). A sample

program for the evaluation of a modified form of (183) is given

in appendix D.

In the absence of signal, all the ITmkI and le mk) in (182)

are zero. Then, all the {apI and fgp} become zero except for go

which is 1. Expansion (183) for the exceedance distribution

function of processor output y then reduces to simply the one

term HK_ (u/2), which is consistent with the noise-only

characteristic function (1 - i2&)-K for processor output y; see

(42), for example. That is, the false alarm probability is

PF HK_(2) . (188)

An error bound for sum (183), terminated at the p = N term,

is given in (D-20). Also, the modifications required to treat

the slightly different forms of characteristic functions

encountered in (124) and (144) are presented in (D-23) - (D-26).

Finally, a refinement of the expansion procedure in (183), which

is more rapidly convergent and useful for larger signal-to-noise

ratios, is given in (D-27) - (D-36).
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FUNDAMENTAL INPUTS AND COMPUTATIONAL PROCEDURE

In the remainder of this section, we will restrict attention

to characteristic function (158) which pertains to special case

6, namely uncorrelated components with proportional covariances;

see (67). However, before we list the fundamental inputs that

are required to conduct the numerical evaluation of the

exceedance distribution function of processor output y in this

case, we make an additional modification for later convenience in

plotting and comparison.

From (52), (38), and (67), we have

Ekm = Eim = E R1 1 (0,0) r(m) (189)

Then, using (53), the average random received signal energy in

one pulse is

M H

E1=-Eim = E R1 1 (0,0) M r(m) . (190)
m=l m=l

This enables us to express the signal-to-noise ratio measure as

Elm E1  r(m)
No 0 = o m ' where *mm M r~)for 1 < m M . (191)

where Mr(m)

m=l

The quantities {#m| represent the fractional strengths of each of

the M random components {gm(t,f)j in fading model (45).

The fundamental inputs required to evaluate the exceedance

distribution function of processor output y are now
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K, number of signal pulses in figure 1,

M, number of fading components in (45),

E1 /No, signal energy to noise density ratio,

{r(m)} for 1 5 m S M; see (67),

IDkm/No0 for 1 5 k 1 K, 1 S m I M; see (50),

RII(r,v)/RI1 (0,0); see (47),

itk) and 1fk1 for 1 1 k S K; see (44). (192)

The quantity E1 /N 0 is a measure of the receiver input average

random signal-to-noise ratio for one signal pulse, while r(m) is

the relative strength of the m-th fading component. Ratio DkmINO

is a measure of the receiver input deterministic signal-to-noise

ratio for the k-th signal pulse and m-th component. The function

R1 I(r,v)/RII(0,0) is the normalized fading covariance function

for the medium at time separation r and frequency separation V.

Parameters tk and fk are the time and frequency locations,

respectively, of the k-th signal pulse in time,frequency space.

The first quantity that must be computed is the normalized

KXK covariance matrix C given by (140). Then, its eigenvalue

matrix A and normalized modal matrix Q are found by solving

characteristic-value matrix equation (141). This yields

eigenvalues 14k1 and eigenvectors {Vk} for 1 S k S K. The

components of column vector Vk are vkl, • • • ,vkK; see (102). We

then compute E(m) from (142) or (157) for 1 • k S K, 1 S m S M.

At this point, the parameters Tmk I and lemki in (182) can be

computed for 1 S k S K, 1 S m S M, and the procedure in (183) -

(187) can be employed. In particular, (182) and (191) yield
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2E 1

Tk = -1o m k for 1 • m • M , 1 S k I K (193)

NUMERICAL PERFORMANCE RESULTS

The first set of examples are selected to enable a comparison

with the approximate procedure and results in [12]. In figure 9,

below, we plot the required per-pulse input SNR (signal-to-noise

ratio) measure E 1 /N 0 (in dB) versus the number of signal pulses

K, for values of the adjacent-pulse normalized (amplitude)

covariance, CoVy, equal to 0, .5, V.5, and 1. In particular, the

covariance Rll(T,v) was taken as exponential in T, and the signal

pulses have no frequency shifts ifkI and are equally spaced in

time locations Itk}; that is, Coy1 = R1 1 (tk+l-tk,0)/Rll(0,0) for

all k. Also, the KM deterministic signal-to-noise ratios

D km/No0 are all zero, and the M strengths tr(m)} are all equal

to 1; this duplicates the situation in [12]. The particular case

in figure 9 pertains to false alarm probability PF = 1E-6,

detection probability PD = .5, and M = 1 fading component; this

last choice corresponds to parameter m = 1/2 in [12]. The

results here in figure 9 for Cov 1 = 0 and Cov 1 = 1 agree

precisely with p = 0 and p = 1 in [12; figure 11], as expected,

while the results for Coy 1 = if.5 are in rather good agreement

with those for p = .5. This selection of parameters reflects the

property that p in [12] is Cov2 here; see the section entitled

Main Program in appendix D for additional details.

The only change in figure 10 is to require a larger detection

probability, namely PD = .9. Although the Covy = 0 and 1 results

68



TR 10041

13
12

V.=

Figure 9. Required SNR for P. 1 E-6, P D = 5, M=

30

2 '

2 3 t o

Figure 10. Required SNR for 'F = 1E-6, P = .9, M = 1
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agree with [12; figure 12], the exact results here for Coy 1 = V.5

are markedly different from the approximate results for p = .5 in

the earlier work. For example, 2.6 dB less is required for K = 2

and K = 3, while 2.3 dB less is required for K = 4. That is, the

earlier approximation in [12] was somewhat pessimistic in its

performance predictions.

We must observe from figure 10 that the effect of correlated

fading is not overly significant until the normalized covariance

approaches 1. For example, for K = 2, the cost of Coy 1

increasing from 0 to V.5 is 1.4 dB, while the cost of Coy1 going

from V.5 to 1 is an additional 6.7 dB. The distinction is even

greater for K = 10, with the same comparison requiring 1.6 dB

versus an additional 12.9 dB.

The example in figure 11 pertains to M = 2 fading components,

(which corresponds to m = 1 in [12]); all other parameters are

the same as figure 9 above. These results can be compared

directly with [12; figure 7]; they reveal identical performance

for Coy1 = 0 and 1, and rather good agreement for Coy1 - 1.5

(versus p = .5).

When the detection probability PD is increased to .9 in

figure 12, these exact results reveal that lower values of E1/No

are required than the approximation in [12; figure 8] predicted,

at least for Cov 1 = i[.5 (p = .5). Also, as was seen in figure

10, the cost of normalized covariance Cov 1 approaching 1 is very

significant in terms of increased signal level; that is, the

Cov 1 = 1.5 curves are well below the Cov 1 = 1 curves in figures
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Figure 12. Required SNR for P F =1E-6, P D .9, M 2
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10 and 12, especially for the larger K values.

The detrimental effect of highly correlated fading pulses is

studied quantitatively in figure 13, where normalized covariance

Coy1 is varied from 0 to 1 as the other various parameters are

kept fixed. The number K of signal pulses is kept at 2. These

plots reveal that for detection probability PD = .5, increased

CoyI does not lead to a significantly large increase in required

input signal level. However, for the better detection

probability of PD = .9, higher covariances can be very damaging,

requiring additional signal strength to maintain the desired

level of performance. For example, as CoyI increases from .9 to

1 in the uppermost example in figure 13, the signal must be

increased by 4.9 dB. (The kinks in the curves are due to

discretization of the abscissa at increment .1 for Coy1 .)

When K is increased to 6, the results in figure 14 reveal

this effect in a more pronounced fashion. An additional 9 dB is

now required when CovI is increased from .9 to 1 for the upper

curve.

All of the above results have had deterministic signal-to-

noise ratio measures IDkm/NoI equal to zero. The program listed

in appendix D has the capability of incorporating arbitrary

values for these parameters as well as others, such as fr(m)).

An example where all the potential is exercised, and all

parameters have nonzero values, is displayed in figure 15. Here,

the detection probability PD is varied from .5 to .999 and the

required E1 /No is calculated (in dB). It is seen that a sharp
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Figure 13. Required SNR versus Cov,, K 2
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Figure 14. Required SNR versus CvK =6
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increase is observed as PD increases above .9, eventually tending

to - as PD 4 1. The particular parameter values are listed

below:

PF = 1E-6, K = 4, M = 2,

r(m) = 1 for 1 <_ m S M,
D km/No = 1 for 1 S k <_ K, 1 S m n_ M,

itk} = 1,2,3,4, Ifk = 1,4,2,3,

RvI (T ,'V) T 2 2
Cov(TV)= RI(0,0) = exp - -fi- ) (194)

1 1 = 
( 11

;< 4- ,

M2

.F

__ "_ --_ ---_ -- _ -1--

Figure 15. Required SNR versus PD
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SUMMARY

The characteristic function of processor output y in figure 1

has been derived in closed form for a wide variety of fading

conditions and signal formats. The corresponding probability

density functions and exceedance distribution functions of y have

then been expanded in convergent series, by means of a novel

expansion technique which make efficient use of recursions for

rapid and accurate evaluation. These series typically require on

the order of 30 to 60 terms for ten decimal accuracy. A program

is given which incorporates all these features, including

allowance for both deterministic and random components of

arbitrary strengths in the fading medium.

One of the most useful results pointed out by this study is

that the degree of correlation between the fading signal pulses

can be fairly significant without suffering great degradations.

That is, when the normalized covariance approaches 1, meaning

that all signal pulses tend to fade together, the performance

losses are potentially large; however, for coefficients below .5,

the losses are not too significant.

Comparison of these exact results with an earlier approximate

procedure [12] reveals that the earlier approach generally gives

pessimistic predictions of performance when the normalized

covariance of the fading is intermediate between 0 and 1. In

some cases, the discrepancy can be several dB. This result

indicates and emphasizes the need for accurate treatment of

systems which must perform well, that is, yield high detection
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probabilities in fading media. An extension of this work to a

fading medium in which the background noise level is unknown and

must be estimated from a finite sample in a noise-only region of

time,frequency space, is currently underway by this author and

will be reported on shortly.

The major result utilized here is the characteristic function

of a quadratic form in correlated nonzero-mean Gaussian random

variables; this result is presented in appendix B. It relies on

the ability to solve the generalized eigenvalue problem; this

latter procedure and solution is presented in appendix E. A

related problem involving a slightly more general bilinear form

is treated in appendix F. Finally, the characteristic function

of the most general complex form with both first-order and

second-order terms is solved in appendix G. These results are

not utilized in this technical report but are presented for

completeness and for possible future use and reference.
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APPENDIX A. ANALYTIC AND COMPLEX ENVELOPE PROCESSES

Let n(t) be a stationary zero-mean real random process with

covariance Rn (r) and double-sided spectrum Gn(f):

Rn (r) = n(t) n(t-r) , Gn(f) f dr exp(-i2nfr) Rn(T) . (A-I)

The analytic process n+(t) is generated by eliminating the

negative frequencies in n(t) and by doubling its positive

frequency contributions; that is, n(t) is passed through a filter

with transfer function 2 U(f), where U is the unit step function.

n(t} OE U if n+lt) -

Figure A-i. Generation of Analytic Process

The analytic process can be expressed in terms of its real

and imaginary parts according to

n+(t) = n(t) + i nH(t) , (A-2)

where nH(t) is the Hilbert transform of n(t). The complex

envelope process n(t) is obtained by frequency down-shifting

analytic process n+(t), in order to center its one-sided spectrum

about f = 0. Thus, if f0 is a representative center frequency of

n+(t), then

n(t) = n+(t) exp(-i2nf t) . (A-3)
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The original real process n(t) then follows from (A-2) and (A-3):

n(t) = Re(n+(t)) = Re[E(t) exp(i2nf 0 t)) . (A-4)

The spectrum of n+(t) follows from figure A-i as

G n+(f) = 4 U(f) Gn(f) , (A-5)

while the spectrum of n(t) is obtained from (A-3) according to

Gn (f) = Gn (f+f ) = 4 U(f+f 0 ) Gn (f+f 0 ) . (A-6)

The covariances corresponding to (A-5) and (A-6) are

n+(t) n+(t-T) and n(t) n*(t-r) , (A-7)

respectively. The two complementary covariances are zero; that

is,

n+(t) n+(t-r) = 0 , n(t) n(t-r) = 0 . (A-8)

These results follow from the fact that transfer function 2 U(f)

in figure A-i is single-sided; that is, U(f) = 0 for f < 0.

A situation that frequently arises in practice is where n(t)

is a noise process with a spectrum Gn(f) that is flat in a broad

band of width W in the neighborhood of fo, which essentially

covers the signals and filters of interest. The spectra of the

various processes are illustrated in figure A-2, where Nd is the

double-sided noise spectral density level of n(t) in the

neighborhood of ±fo0  The spectrum Gn(f) of the complex envelope

n(t) is flat in the neighborhood of f = 0 and has level 4 Nd

watts/Hz. Therefore, its covariance
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Figure A-2. Spectra of Analytic and Complex Envelope Processes
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Rn (T) = { df exp(i2nfr) G n(f) (A-9)

is (relative to the signal and filter time functions) a sharp

pulse centered at T = 0, with area Gn (0) = 4 Nd. Then, a good

approximation for many purposes is to say that

Rn (r) 2 4 Nd 6(r) . (A-10)

There is no need to let W and f tend to infinity in order to

utilize this result; it only requires that W be somewhat larger

than the bandwidths of the signals and filters of interest.

In terms of the one-sided noise spectral density level of

n(t), that is, No = 2 Nd, approximation (A-10) becomes

R n(r) 2 NO 6(r) . (A-Il)

This result may be compared with (19; page 48, (3.10) - (3.1.'

and page 72, (6.21) - (6.22)], where his N is our N0 .

It should be noted that original covariance Rn (r) in (A-i)

cannot be recovered from this approximation. That is, via (A-4),

Rn(T) = y Re (r) exp(i2nfo)) = (A-12)

- Re (4 Nd 6(T) exp(i2nf 0 r)) = 2 Nd 61(r) , (A-13)

which is incorrect. The flaw is that the use of 6(T), which is

tantamount to W 4 -, must be accompanied by having let fo0  -, in

addition. That is, exp(i2nf 0 r) in (A-12) must vary as fast as

R n(t) in order for the narrowband representation to be valid.

The correct end result for fo = W/2 is Rn (T) 4 Nd 6(r) as W 4 '.
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APPENDIX B. CHARACTERISTIC FUNCTION OF QUADRATIC AND LINEAR

FORM IN CORRELATED NONZERO-MEAN GAUSSIAN RANDOM VARIABLES

The Nxl real vector X is composed of correlated Gaussian

components with mean vector E and covariance matrix C; that is,

S= E , Cov(X) = (X - E)(X - E)T = C . (B-I)

Covariance matrix C is NXN, real, symmetric, and nonnegative

definite. Real Nxl vector E is completely arbitrary.

We shall be interested in obtaining the characteristic

function of the quadratic and linear real form in X given by

q = q(X) = XT B X + 2 AT X , (B-2)

where NXN matrix B is real, symmetric, and positive definite,

while real Nxl vector A is completely arbitrary. By completing

the square, (B-2) can be written in the alternative form

q = (X + B- A)T B (X + B-1 A) - AT B-I A . (B-3)

Therefore, the minimum possible value of q is - AT B- A. The

case of an indefinite matrix B is undertaken below (B-42).

Random vector X is composed of correlated Gaussian random

variables; its probability density function is [20; section 8-3]

p(X) = (2n)-N/2 (det C)_-1/2 expt- (X - E)T C-1 (X- E) (B-4)

The characteristic function of interest is then given by

f ([) = exp(i~q) = J dX p(X) exp[i~q(X)] . (B-5)
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For convenience, we introduce variable

z = i2t . (B-6)

Substitution of (B-2) and (B-4) in (B-5) yields

-N/2 -1/2
f q(&) = (2n) (det C) X

x dX exp[- !(X - E)T C-1 (X - E) + ½z XT B X + z AT X]

= ( 2 ) N/2 (det C) 1 2

L.r T -1 -1 T I T -1I
x j dX exp1 - PX (C-- zB)X + (C E + zA) X - C Ej . (B-7)

Now we have the result [20; section 8-3)

f dX exp[I- xT U X + VT X] = ( 2 )N/2 (det U)-1/2 exp RVT U-I V]

(B-8)

This enables the reduction of the integral in (B-7) to

fq(f) = (det C)-1/2 (det(C-1 - zB))-1/ 2 x

x exp[½(C-i E + zA)T(C - zB)-(c- E + zA) - lET C- El . (B-9)

Although closed form, (B-9) is not too useful numerically because

it requires an inverse of matrix C-1 - zB for each new value of z

(= i2&) of interest.

A much more compact and useful form of (B-9) can be obtained

by means of the following procedure. For the given covariance

matrix C and quadratic-form matrix B, solve the generalized

characteristic-value equation
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C Q = B-1 Q A (B-10)

for NXN eigenvalue matrix A and normalized modal matrix Q, where

A = diag[(X ... - N] , Q = V1 ... VN] , Vn = [Vni ... VnN]T ,

(B-i1)

and Nx1 column vector Vn is the n-th eigenvector with scalar

components 1v np. A procedure for obtaining the solutions A and

Q to (B-10) is given in appendix E, when matrix B is positive

definite.

(It should be noted that (B-10) does not have exactly the

same solutions as the equation B C Q' = Q' A'; in fact, B C is

not generally symmetric, even if B is diagonal [18; page 79,

(253)]. The connection is A' = A, Q' = Q D, with D diagonal.)

Then, we have the two very important properties [18; pages

74 - 77] of solutions Q and A:

QT B-1 Q = I, Q CQ= A. (B-12)

By means of these two relations, a number of simplifications of

(B-9) are possible. We begin by observing that

B-I = Q-T Q- , B =Q Q T, C = Q-T A Q- , C-1 = Q A- Q T. (B-13)

(Notice that QT Q # I.) We now employ (B-13) in (B-9) to get

C - zB = Q (A- -zI) QT , (C -1 zB)-i = Q-T (A- _ zi)-I Q-I

(B-14)

At the same time, using (B-13),
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det(C) det(C- 1 - z B) = det(I - z B C) = det(I - z Q A Q-) -

N
= det(I - z A) = 7(i - z X. " (B-15)

n=1

Meanwhile, if we denote twice the argument of the exponential

in (B-9) by t, we have, by means of (B-14), the alternative

expression

t = (C- E + zA)T Q-T (A-1 - ZI)-1 Q-1 (C- E + zA) - ET C-I E

(B-16)

Now, by means of (B-13), develop the term

Q-1 (C-I E + zA) = Q-1 C-i E + zQ- 1 = =A- QT E + zQT B-1 A-

-1
= A E + zA, (B-17)

where we have defined Nxl vectors

E = Q T E = CE E T FC VT E

QT T T -1B - = [[a1 ... aN] , an = Vn B A

Then t in (B-16) becomes, again using (B-13),

t = (A- E + zA)T (A-1 - zI)-1 (A- E + zA) - ET Q A-1 QT E

= (A-1 E + zA)T (A-1 - zI)-1 (A- E + zA) - ET A-1 E

N (IAn + z an2 N 2
n n n)1/" 1k - -

n=l n n=1 n

N aE + n2 N

Zz n a 2 . (B-19)
n=1 n n=1
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By collecting all these results together, we can express

the characteristic function in (B-9) in the compact form

f• [ I 1-h & N E n + a2n)2 N 21 (B-20)

fq() = Tl l-i2in) = 1 - i2- an

The last constant in (B-20) has the alternative representation

Sa2= - AT A T B-I Q QT B-I A=- AT B- A, (B-21)

where we used (B-18) and (B-13); this is just the residual

constant encountered in (B-3). Thus, the characteristic function

of the leading (nonnegative) quadratic form in (B-3) is just

(B-20) without the second summation inside the exponential.

Additional relations available from (B-18) and (B-13) are

ZN C2 = ET E = ET Q QT E = ET B E,
n= n

Cn aan-= ET A = ET Q QT B-1 A = ET A = AT E. (B-22)
n=l

However, we need the constants a n) and En I individually for

characteristic function ý-20). The quantities 12XnI and

1(£n + an) 2 J should be computed once and stored in arrays prior

to the computation of fq () in (B-20) at the numerous & values

required.

Strictly, the leading product in (B-20) is a product of N

principal-value square roots. However, it can be evaluated
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numerically as a single square root of a product of the N terms

1l-i2&Xn), provided that the location of this product is tracked

in the complex plane from the point 1 when [ = 0. See, for

example, [21; page B-5, lines 220 - 270].

If the linear form in (B-2) is absent, then vector A = 0,

A = 0, and an = 0 for all n. However, we still need quantities

Cn =V T E for 1 l n • N, (B-23)n n

for the exponent in (B-20), thereby necessitating calculation of

eigenvectors IVn 1. Only when mean vector E is also zero (in

addition to A) do just the eigenvalues JXnI of (B-10) suffice for

calculation of characteristic function fq(&) in (B-20).

In this latter case, the matrix B C can be considered

instead, since it has the same eigenvalues IXn 1. This follows

from the following manipulations: (B-10) and (B-I1) can be

written as

C (V1 . . . VN] = B-I [V1 . . . VN] diag[X1 •. X N , (B-24)

or

C Vn =B-1 Vn Xn for 1 n S N . (B-25)

Therefore

0 (C B-1 = B-1 I) Vn (B-26)
=(C-B n) V B (BC - I)n

or, since B is positive definite,

det(B C - Xn I) = 0 for 1 & n • N . (B-27)

Thus, X nI are the eigenvalues of matrix B C as well as (B-10).
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CUMULANTS OF q

Before determining the cumulants of q, we present a few

relations which will enable easier manipulations of various

matrices encountered below. From (B-13), there follows

B C QA Q-I11 BC QT
-1 2T

BC Q Q , BCB=QAQ ,

B C B C =Q A Q B C B C B =Q A Q • (B-28)

Therefore

N
tr(B C) = tr(A Q-1 Q) = tr(A) = = X2 ,

n=1 n

Now, if we expand the natural logarithm of the general

characteristic function fq () in (B-20) in a power series in i&,

we can easily pick off the cumulants as

nEl 2 +TEnn

Xq(I) = P = Xn + £n + 2a = tr(B C) + ET B E + 2 AT E
Nq n- n n nn)

Xq(P) = 2P-I (p-i)! • k X + p(e + a for p k 2. (B-30)
q -') L n' n)2

Here, we used (B-29) and (B-22). In particular, the variance of

q is

X(2 ) = a2=2 'k~ 2x + 2X (c + an) 2)=

2 tr((B C)2) + 4 (B E + A)T C (B E + A) . (B-31)
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This latter relation follows from these manipulations:

N ( +a)2 =(E + A)T A (E + A)-
= Xn (n +an)n=1

= (E + B- A)T Q A QT (E + B- A) = (E + B- A)T B C B (E + B- A) =

T
= (B E + A) C (B E + A) . (B-32)

Here, we used (B-18) and (B-28).

ALTERNATIVE DERIVATION OF CHARACTERISTIC FUNCTION (B-20)

We start again with conditions (B-1) and (B-2). Then, solve

(B-10) for Q and A, as before. Now, consider the linear

transformation of Gaussian random vector X according to

y = QT (X - E) _ [Yl . . . YN]T N (B-33)

Then Nxl Gaussian vector Y has mean Y = 0 and covariance matrix

Y YT = QT (X - E)(X - E)T Q = QT C Q = A , (B-34)

where we used (B-i) and (B-12). This diagonal matrix means that

Yn=0  Yn =n 6 (B-35)

that is, lynI are zero-mean uncorrelated (and therefore

independent) Gaussian random variables. This is the key to this

development.
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At the same time, solving (B-33) for X, we have, with (B-12),

X = E + Q-T y = E + B-1 Q Y (B-36)

Then quadratic form (B-2) can be expressed as

q = (E + B-1 Q Y)T B (E + B- Q Y) + 2 AT (E + B-1 Q Y) -

_ yT Y + 2 (ET Q + AT B-1 Q) Y + ET B E + 2 AT E

YT Y + 2 (E B + A QT) Y + ET B E + 2 AT E

=Y Y2 (E+ + E2 A E

Sn + 2(En + a)yn + 2+ 2cna (B-37)
n n n n n 2nan)n=1

where we used (B-12), (B-18), and (B-22). Therefore, using

the independence property derived in (B-34) and (B-35), the

characteristic function of q is

f (&) = exp(i~q) = I T j dyn exp x
q n=7 h 2 X

n=l Pit >'n) ½ x -nI

x exp[i .&y2 + 2 (n + an)yn + E2 + 2Enan)]}=

N -1 -i2&X ½ & (En + an)2 ia2j} (B-38)

n=l1ex) 1 i2&X n

which is equal to (B-20).
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PROPERTIES OF EIGENVECTORS IV n

Consider the representation of modal matrix Q in terms of

eigenvectors (Vnj in (B-li). Then the first relation in (B-12)

and the second relation in (B-13) yield, respectively,

T 1- N T (B-39Nn Vm = 'nm L Vn VT
n=l

Similarly, the second relation in (B-12) and the fourth relation

in (B-13) yield, respectively,

N

VT C= 1 V VT = C- (B-40)
n C X nn=i. X n n

Thus, there are two orthogonality relations satisfied by the

eigenvectors IVn}, namely the leading relations in (B-39) and

(B-40). If, in addition, matrix B or C is diagonal, then the

trailing relations in (B-39) and (B-40) yield an additional

orthogonality property.

In terms of the components (B-l1), the relations above become

N N
k,j=l kj vmj = 2-n ' 6nZ vnk vnj = Bkj ' (B-41)

and

N N
ZZ vn (~j X~-vk v =.C (B-42)

k,j=l n n=l n nj C-k
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GENERAL SYMMETRIC MATRIX B

All the results above are based on the premise that matrix B

in the quadratic form in (B-2) is positive definite. However,

there are examples where this is not the situation, in which case

the corresponding procedure for solution of (B-10) in appendix E

(that was mentioned under (B-Il)) is not applicable. We now give

an alternative procedure for obtaining the characteristic

function of q in (B-2) for any real matrix B, whether definite or

not. Matrix B can be taken symmetric without loss of generality,

since only the symmetric part of B is active in (8-2).

We first observe that the NXN covariance matrix C in (B-i) is

always nonnegative definite because

VT C V = VT (X - E)(X - E)T V = TvT(x - E))2 a 0 (B-43)

for any Nxl real vector V. We shall presume that C is positive

definite. Instead of solving (B-10), we solve the alternative

generalized real characteristic-value matrix equation

B Q = C-I Q A (B-44)

for NxN normalized modal matrix Q and diagonal eigenvalue matrix

A. A procedure for this solution is given in appendix E; see

(E-14) and sequel.

Then, these solutions satisfy (18; pages 74 - 77]

QT C-I Q = I, (B-45)

QT B Q = A diag[A1 . • • XN] • (B-46)
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Now let linearly transformed Nx1 random vector

Z = Q-1 (X - E) [z . . Z N]. (B-47)

Then mean Z = 0 and covariance matrix

Z ZT Q-1 (X - E)(X - E)T Q-T Q-I C Q-T = I , (B-48)

upon use of (B-i) and (B-45). Solve (B-47) for X, obtaining

X = Q Z + E . (B-49)

Now, substitute (B-49) into quadratic and linear form (B-2):

q = (Q Z + E)T B (Q Z + E) + 2 AT (Q Z + E) =

=(Z + Q-I E)T QT B Q (Z + Q-1 E) + 2 AT Q (Z + Q-1 E)=

= (Z + E)T A (Z + E) + 2 AT (Z + E) , (B-50)

where we used (B-46) and defined two auxiliary NxI vectors

E = Q- 1 E - [ 1  E N " N]T (B-51)

and

_ A [a . a •N]T (B-52)

Therefore, (B-50) can now be expressed as

N
q = nZ (An zn + Xn En + 2 an )(zn + En) (B-53)

n=1

The characteristic function of q can now be readily found,

with the assistance of covariance property (B-48), in its most

compact form
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f q() = exp(i~q) =

NTT (J dzn (2n)-½ exp[_ 1 2 + AnZn+Ancn+2an)(zn.n)

[IN([-½ [ N A 2 + 2 Ean + i2&au1

= l-i2&2AnJJ exp = n (B-54)S n)n=1 1 - i2&An I -

In summary, the following computations must be performed:

solve (B-44) for NxN matrices Q and A; compute Nx1 vectors E and

A by means of (B-51) and (B-52), respectively; and evaluate f (q)q
at desired & values by use of (B-54). The only inverse matrix

required is that of modal matrix Q; the solution of (B-44) does

not actually require calculation of C-1, as will be seen in

appendix E, (E-14) and sequel.

If mean vector E in (B-i) is zero and/or if linear form

vector A in (B-2) is zero, the corresponding calculations in

(B-51) and (B-52) can be circumvented. If both E and A are zero,

the exp term in (B-54) is absent altogether.

In this latter case, only the eigenvalues IAn I of (B-44) need

be determined. If we let Vn be the n-th eigenvector (column) of

Q, equation (B-44) takes the form

B Vn = C-1 V An for 1 • n : N . (B-55)

This can be manipulated into

(B - C 1 )Vn = 0 , (B-56)

meaning that
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det(B - AIn C-) - 0 (B-57)

or, since det(C) ,O 0, that

det(B C - An I) 0 . (B-58)

That is, An ) are the eigenvalues of matrix B C. This is a much

simpler numerical task than solving (B-44) for both Q and A.

If none of the eigenvalues X An I are zero or near zero, then

(B-46) furnishes inverse matrix Q-1 = A-1 QT B and an alternative

to (B-51), namely

E = A-1 QT B E,

n VT B E for 1 nS n N. (B-59)
n n n

Also, from (B-52), regardless of the sizes of the eigenvalues,

T
an = V A for1SnIN (B-60)

The interrelationships between Q and A in (B-44) and the

corresponding matrices Q and A in (B-10) are derived in appendix

E, (E-24) and sequel. The identity of characteristic functions

(B-20) and (B-54) is also verified there.
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PROPERTIES OF EIGENVECTORS IVnj

Relations (B-45) and (B-46) yield the following orthogonality

properties between the eigenvectors:

T C-1 TB61V• C- Vm =6n , V• BVm =XA 6n .(B-61)
ný m = nm n B m =kn 6rim

Also, since (B-45) and (B-46) can be alternatively expressed as

C =Q Q T and B- =Q A- QT, we have

nl Vn = C N 'n Vn T = B- . (B-62)

n=1 n=1 nnn

As a special case of (B-61), it can be seen that A = VT B V

therefore, if matrix B is nonnegative definite, then An 2 0 for

all n. The following example demonstrates that indefinite

symmetric B matrices can lead to negative eigenvalues, even when

matrix C is symmetric and positive definite:

B 4 1 C = 1 3(B-63)
-6 73 5

the eigenvalue and eigenvector solutions to (B-44) are

A= [8 _1 Q [ 1 (B-64)
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CUMULANTS OF q

By taking the logarithm of characteristic function fq (&) in

(B-54) and expanding in a power series in i&, the cumulants of

quadratic and linear form q are found to be

N± Vn(1 2 + 2EJ for mn = 1n=1

Xq(m) = .(B-65)

(rn-i) 2 [ + m[Xc n aE2n for mn Z 2
n=1
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APPENDIX C. CHARACTERISTIC FUNCTION OF OUTPUT y FOR GENERAL

TRANSMITTED SIGNAL ENERGIES fEkI AND RECEIVER WEIGHTS JAk0

The conditional characteristic function of processor output

y, for arbitrary transmitted signal energies 1Ek} and receiver

weights ( AkJ, was given in (27) as

f = k - i& 2a J exp-i& = wk r 2 (C-1)ck=1l k=l k

where

2 4 A2 -2
ak 2 N A2 Wkk k .C-2)
k 0 k k k 4 N A 2 E

It is important to notice that the coefficients 1wk) in the

summation in (C-1) are complex and are functions of argument [.

Now, we want to find the unconditional characteristic

function of y, after averaging over the statistics of amplitude

scalings {rkJ. From (43) - (45),

2= M 2 M 2
r2k [cm(tk,fk) + gm(tk,ff)] = x2k (C-3)

m=l m=l

where Gaussian random variables

xmk = Cm(tk,fk) + gm(tkfk) for 1 & m - M , 1 < k S K . (C-4)

Therefore, the exponential term in (C-i) becomes

exp~i K r2= xi&XT-j, (C-5)
KZ wk = [ik X Xl

k=l
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where MKxl random Gaussian real column vector
T

I [X -11 - XMl ... Xlk- XMk -. - X1K --- XMK] , (C-6)

and MKXMK diagonal matrix of complex elements

W = diag[w 1 .... w 1 - k .... Wk .. w .... w J (C-7)

M terms

The MKXMK covariance matrix of vector X is

Kx = CovfXI = (X - X) (X - ) T (C-8)

which is known.

The unconditional characteristic function of y is available

from (C-i) and (C-5) in the form

f = fc(&) = TT 1 - i& 22) exp i& XT X X -

" KT i&a 2) J dX (2n)-MK/2 det K )-½
k=l(

xexp[-I(X _ )T Kx1 (X -)+i XTiWX] =

= T iý 2a k (det (I - i&2 WK ) X
k=l

[-1 RT -1 K T -

exp(I - i&2 W-T K-1 XR (C-9)
2x[~ x X2 x

The matrix W- depends on & through coefficients (wk} in (C-2).

Therefore, in order to compute (C-9), it is necessary to invert a

complex MKXMK matrix for each & of interest. However, if mean X

is zero, only the determinant in (C-9) need be evaluated.
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UNCORRELATED FADING COMPO!'ENTS {gm(tf)}

In this subsection, we presume that the fading components in

model (45) are uncorrelated and therefore independent. This

means that, in (C-4), random variables x ml,***.XmK are indepen-

dent of Xnl,*.*.XnK for m 4 n. Reference to (C-i) and (C-3) then

yields the characteristic function of output y in the form

f() = fc(t) = 1Ti - it 2a ) E(&) , (C-10)
k=l

where

K 21[ K I ]
E(&) = expit wk r2 = exp it U- Wk =--i Xk

k=1 k=1 m=l

M K K
T -exp i (C-lI)

m=l I k=l

Now, let Kxl real random vector Xm and KxK complex diagonal

matrix W be defined according to

Xm = [Xml 0 * ' XmK]T , W = diag[wI 1 • • wK] • (C-12)

Also, let the covariance matrix of Xm be denoted by Km, which is

a KXK real matrix, for 1 S m S M. Then, the m-th term in (C-lI)

becomes

exi K w 2 I = exp[i& XT W Xml =dXm (2n)_K/2xex & i=- wk mk m
I k=l

X (det K -ý exp[- !~ (Xm - R) T K1 (Xm - + iT W XmI =
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(det(I-i&2WKm) exJ[l - (I - i&2 W Km)-' Km' Xm - 1T Km' R]

(C-13)

Finally, the desired unconditional characteristic function of

processor output y follows from a combination of iý-10), (C-lI),

and (C-13) as

K -1 -
f,(&) = 1T-1 - i& 2a2) VT(det(I - i72 w Kin))

k=1 m=l

eP½-T 1Ii2WK)•-- 1 --T 1
xexp[ X m (I - i&2 W Km)1 Km 2 Xm Km Xm} (C-14)

The major computational burden here consists of the inverses

of M complex KXK matrices for each & value of interest. However,

if the M covariance matrices 1Km) are all identical, the task is

considerably simplified. Alternatively, if all the means {X m)

are zero, then the evaluation is limited to M determinants of the

complex MXM matrices I - i&2 W K . The KXK complex matrix W is

defined by (C-12) and (C-2).
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APPENDIX D. DERIVATION OF PROBABILITY DENSITY AND

EXCEEDANCE DISTRIBUTION FROM CHARACTERISTIC FUNCTION

The general forms in (136) and (158) of the characteristic

function of processor output y can be written as

f (•) = (1 - i2E1KITM-I1 - i2& 1 + Tmk X
1m=I k=1

M K emk 1x exp i•Z Li , (D-1)

m=1 k=l 1 - i2(1 + Tmk)J

where, respectively

T = 2Em )(m) 2E1  (n)
omk rN Tmk N 79-emk - "0 0

We want tc determine the corresponding probability density func-

tion and exceedance distribution function. There is a possible

numerical problem using Fourier transforms on (D-1) directly,

since its asymptotic decay is only proportional to &-K as & 4 -,

which makes accurate results difficult to achieve for small K.

We will expand (D-1) in a power series in (I - i2&)-1 and

thereby obtain not only an asymptotic expansion of f (&), but in

fact, a convergent series which can be transformed term-by-term

to yield the probability density function of y. Integration then

yields the exceedance distribution function. Furthermore, it

will turn out that all the series coefficients are positive and

related by recursions involving only positive terms. These

properties enable very accurate and efficient evaluation.
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We begin by making the transformation

1 = 1 - z (D-3)
1 - i2& I z

Substitution in (D-1) yields, after manipulation,

f Y() = F zK D(z) E(z) , (D-4)

where

F 7 FT7 T(i1 + Tkj D(z) = T7 F i - z rmk-
1m=1 k=1" 1m=1 k=1"

r T Tk M K e mk/(I+Tmk) (mk 1 + Tm 2 = 1 rmk

To develop the series of D(z) in powers of z, expand

M K G
In D(z) = = ln(l - z rink) = OpZ p , (D-6)

m=1 k=1 P=1

where

M K

AP 2 Z =Z = rPn forpŽk 1 (D-7)

Notice that Pp Z 0 for p Z 1 since Tmk k 0; this latter property

follows from (D-2) and the fact that eigenvalues of covariance

matrices can never be negative.

At the same time, the expansion of In E(z) in (D-5) is

1 M K Sink O rp zpin E(z) )- - z) M = 1 + mk " (D-8)

m=1 k=1 Tmk p=O
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By combining the results in (D-6) - (D-8), there follows, after

some manipulations,

ln(D(z) E(z)) = azp , (D-9)

p=o P

where

1 M K emka o =-f2 = = 1 + Tm

M K TP-1  Tk emk
a =z2 zz mk IpTk + +Tmk for p k 1 (D-10)

m=l k=l (I + Tmk)p 1 i

Notice that ap k 0 for p k 1.

The desired product for use in (D-4) is then [17; page 93]

D(z) E(z) = expl al ap z = g , (D-11)
ip~o p=0 P

where

90= exp(a 0 ) g =n a n pn for p k 1 . (D-12)go = xp~a) ' p =p n=l g-

It is important to notice that gp Ž 0 for p k 0; that is, the

recursion in (D-12) involves no negative quantities, thereby

avoiding cancellation error.

Finally, the characteristic function in (D-4) can be

expressed in the desired power series in z (= (I - i2&)-I) as

f() = F zK g zp (D-13)
Y P=03
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Now, we know the following Fourier transform pair between a

characteristic function and a probability density function:

n-i
z = 1 U exp(-u/2) for u > 0 . (D-14)

(I - i2&)n 2n (n-l)!

This enables us to write the probability density function of y,

directly from (D-13), in the form

00 UK+p-1 x-u2
p (u) = F g exp(-u/2) for u > 0 , (D-15)

p= 2P p (K+p-l)!

where scale factor F is given by (D-5). All the terms in this

series are nonnegative.

Intecration on the positive tail of density p gives the

exceedance distribution function of y:

Prob(y > u)= J dt p (t) = F Zr g HK+ 1I2) for u > 0, (D-16)

where F is given by (D-5) and

n k
Hn (x) = exp(-x) Z= - for n k 0 , x k 0 . (D-17)

n ~ k=O k!

This latter sequence of functions is easily generated by use of

the coupled recurrences

H (x) = exp(-x) , Hn (x) = Tn (x) + Hn-l(X) for n k 1

To(x) = exp(-x) , Tn (x) = Tnl(X) x for n k 1 . (D-18)
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The two recurrences derived above, namely (D-12) and (D-18),

utilize only nonnegative quantities. The single negative term,

0O in (D-10), is immediately converted to positive quantity g0 in

(D-12) and a is not encountered again.

Since processor output y can never be negative (see figure

1), we have, from (D-16) and (D-17),

1 = Prob(y > 0) = F • g . (D-19)
p=o p

This relation can be used to furnish an upper bound on the error

incurred by using up to the p = N term in series (D-16) for the

exceedance distribution function. In particular, the error is

CD N
F 1g H K+P (u I F =Ig = 1 - F 3 g (D-20)
p=N+12 p=N+1 P=O

for all u k 0. The upper bound of 1 on Hn(X) follows immediately

from definition (D-17). Since scale factor F and coefficients

IgpI for 0 S p S N must be computed anyway, in order to utilize

(D-16), error bound (D-20) is simple to compute. It says that

the error at any u is never larger than the error at the origin.

However, (D-16) converges too slowly in some cases of large

signal-to-noise ratio; only sequence (gpI converges to zero.

Result (D-19) allows a modification to sum (D-16) which will

converge much more rapidly. From (D-17), since Hn(X) 4 1 as

n 4 •, we express (D-16) as
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p=O

NOW, bothh factors in the latter sum decay to zero as p increases.

In fact,

Hi ) ep( x) n + 1 for n > x . (D-22)

This alternative in (D-21) is utilized in the program listed at

the end of this appendix. Recursions for 1 - Hn(x), which are

obvious modifications of (D-18), are also used.

As noted at the beginning of this appendix, form (D-()

encompasses (136) and (158) in the main text. It therefore also

covers (139) and (160), because these are reductions that can be

obtained, respectively, by setting all femk} to zero. If all the

{emk a_ {TmkJ are zero, then all fact are zero, from (D-10).

Then, all Hg } are zero except gx = 1, from (D-12). In this case

of noise-only, series (D-16) has just the one term HlisU/ 2 ).

The results above, for the expansions of the characteristic

function, probability density function, and exceedance

distribution function, also apply directly to forms (124) (and

(126)) as well as (144) (and (149)) in the main text, but with

the following changes. For (124), define instead

Tn = I an ' en z e 2o F aFl +T)J , (D-23)
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along with

1 KM en

n=1 n

o KM Tp- r T eni

a P = _f = n p + I+nT for p k 1 (D-24)
n=1 (1 + )P [ 1 +Tn

The recurrence (D-12) involving Igp) is unchanged.

For (144), define instead

T 2Ei _ , F K ( + T , (D-25)Tk = -k k7 k t
0k=

along with

a= 0 1 + T
k=l k

a k _ Tk + -k for p Ž 1 (D-26)ap = i - - p pT k 1 + T
kl(1 + T k)P P+k

Again, the recurrence involving Igp) is unchanged.
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REFINEMENT

In some cases, a refinement of the above procedure may be

worthwhile, especially for larger signal-to-noise ratios. We

illustrate it with reference to (150), which applies to M = 2,

two components in fading model (45). In this case, we have

characteristic function

f - i2 Qk)I (D-27)[k=1•

where

2EliQk2=+ E 11 kfor 1 ý k S K. (D-28)

These quantities (QkI are always larger than 1 for nonzero

signal-to-noise ratio.

Instead of making transformation (D-3), we modify it to the

more general form

1
Z = 1 i2&Q (D-29)

where Q can be chosen larger than I if desired. Then, defining

F = Q 7 Qi , = k for I • k • K (D-30)k-1 Qk

characteristic function (D-27) can be developed as

f ~ ) = K -1 F K e O"
=Y [ - tkzj = Z exp a , (D-31)

108p=
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now with

p ap t p for p k I (D-32)kk=1 k=1l Q

If we take the constant Q to have value

= min Qk (D-33)
llklK

then all the {tkI and ja p are nonnegative, and we still have

all the desirable properties listed above. The value Q is always

larger than 1; it enables (D-31) to furnish a better fit to

(D-27) with fewer terms than arbitrarily forcing Q = 1. Larger

values than Q can yield still more-rapidly convergent series, but

at the expense of some negative (gpI. There follows, from (D-31)
p

fy( = F zK = g zp = F = g (1 - i2Ze)-K-p (D-34)

for any Q; see (D-11) and (D-12) for the Igp . Expansion (D-34)

should be compared with the moment procedure in [17; (102) and

(105)], where a different basis set, namely the generalized

Laguerre functions, is used for the series expansion.

The corresponding exceedance distribution function is

CO'

Prob(y > u) = F = g~ H U)1~ for u > 0 . (D-35)
p=o

Alternatively, we have the more rapidly convergent form

CiO
Prob(y > u) = 1 - F = gp 11 - H'K.P~lIJu)] for u > 0 . (D-36)
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PROBABILITY DENSITY FROM CHARACTERISTIC FUNCTION (163)

The characteristic function of normalized random variable

* = q/R 1 1 (0,0) defined in (161) was presented in (163). The

corresponding probability density function p.(u) was then

evaluated for a few special cases in (166), (171), (175), and

(180). More generally, if we apply the expansion technique above

to general result (163), we obtain the following procedure for

Plu): given M, Ir(m)), 21), and threshold u,

= r,} a= - - 4 • (D-37)['m=l o 2m=l

p I (,(m- 1 + p N2) for p a 1 (D-38)
m=l r(m) /

) I- g =n 1o p 1(D39
1

= exp(ao0  p = n=l gn p-n for p 2 1 (D-39)

h (u) Žus-e exo(-u/2)
0 2 M/2 r(M/2)

hp ( p 2 + 2p for p k 1 , (D-40)

p 4 (u) = F - gp h (U) for u > 0 . (D-41)
p=0 P

A function subprogram for this particular procedure is listed on

the next page.
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FUNCTION SUBPROGRAM FOR (D-37) - (D-41)

10 DEF FNPdf(DOUBLE M,REAL U,Rs(*),Etasq<*))
20 DOUBLE Ms,Ps !INTEGERS
30 ALLOCATE Q<1:M),R(1:M),S(1:M),A(l: 100),G(8: lee)
40 M2=M/2.
58 M21=t12-1.
60 U2=U/2.
78 F=l.
88 S-0.
98 FOR tMs= TO M

188 Rs=Rs(Ms)
lie T=1..'Rs
128 EinEtasq(Ms)
138 Q(Ms)=1.
148 R<Ms)=1.-T
158 S(Ms)=E*T
168 F=F*Rs
170 S=S+E
188 NEXT Ms
198 G(O)=EXP(-.5*S)
200 H=.5*U2-'M21*EXP(-U2)/(SQR(F)*FNGamma(M2))
210 Pdf=G(0)*H
228 0=1.
230 FOR PslI TO 188
240 S=O.
256 FOR Ms=l TO Mi
260 R=R<Ms)
270 IF Ps=l THEN 290
288 O(Ms=Q=Q(Ms)*R
298 S=S+Q*(R+Ps*S(Ms))
380 NEXT Ms
318 A(Ps)=.5*S
328 S=O.
330 FOR Ms=I TO Ps
348 S=S+R(Ms)*G(Ps-Ms)
350 NEXT Ms
360 G(Ps)=GS/Ps
37e H=H*U2/(M21+Ps)
388 T=G*H
390 Pdf=Pdf+T
400 IF T<Pdf*l.E-15 THEN 440
418 NEXT Ps
420 PRINT "100 TERMS ARE INSUFICIENT"
430 PAUSE
448 RETURN Pdf~
458 END
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MAIN PROGRAM

A program for the evaluation of (D-21), by means of (D-10)

and recursions (D-12) and (D-18), is presented below. The

desired false alarm and detection probabilities, Pf and Pd

respectively, of the processor in figure 1 are specified in lines

10 and 20. Parameter K in line 30 is the number of signal

pulses, while M in line 40 is the number of components in fading

model (45). The M power ratios {r(m)} are inputted in line 50,

while the MK deterministic input signal-to-noise ratio measures

IDkm/N 0 1 are entered in line 60. The K time locations {tkI and

frequency locations Ifki of the K transmitted signal pulses are

entered in lines 70 and 80. Guesses at the required average

random input signal-to-noise ratio measure E1IN are required in

lines 90 and 100; the program will search for the required

threshold u and required input signal-to-noise ratio E 1 /N 0 to

meet the specifications.

The normalized covariance function of the medium fading is

described in function subprogram DEF FNCov(Tau,Nu); currently, it

allows for exponential decay in time separation r and frequency

separation v, but can be easily modified. It must be noted that

covariance Rmn(Tv) defined in (47) involves a product of the

amplitude-fading quantities {gm(tf)}, not their squares. This

distinction, relative to covariance Rkj in (55) and normalized

covariance in (56) between power-fading variates Ig2(t,f)1,

must be carefully observed and maintained; furthermore, it is

worthwhile to review (66) and (69) at this point, which pertain
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only to special cases 5 and 7.

Quantities that need be computed only once and then used

repeatedly for different signal-to-noise ratios, such as the

eigenvalues and eigenvectors and some auxiliary arrays, are

evaluated in the main program and passed in common to function

subprogram DEF FNPd for the detection probability. Similarly,

for speed and storage purposes, we have identified, for use in

this subprogram, the array variables A(p) = p ap for p k 1 and

G(p) = F gp for p k 0. A separate listing for the false alarm

probability PF in (188) is given in function subprogram DEF FNPf.

The program is listed in BASIC for the Hewlett-Packard 9000

computer. On this particular device, the notation DOUBLE denotes

INTEGER variables, not double precision. As a numerical check,

the values printed out are threshold U = 38.2583364 and signal-

to-noise ratio measure dB = 10 logl 0 (E1 /No) = 13.4744256. Since

the mean of processor output y for noise-only is y = 2K = 6, the

normalized threshold is U/y = 6.376, for this example of

PF= 1E-6.
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18 PfIlE-6 !FALSE ALARM PROBABILITY
28 Pda.9 !DETECTION PROBABILITY
38 K-3 !NUMBER OF SIGNAL PULSES
48 M=2 !NUMBER OF FADING COMPONENTS
58 DATA 1.,1. !POWER RATIOS r(m) FOR 1 <= m <= M
60 DATA 8,0,8,0,8080 Dkm/No FOR 1 <= k <= K, 1 <= m <= M
78 DATA .1,.3,.5 !TIMES tk (SEC) FOR 1 <= k <= K
8e DATA .2,.60.4 !FREQUENCIES fk (HZ) FOR 1 <= k <= K
98 ElnoO=10. E1'No STARTING VALUE
100 ElnollI. IEl/No INCREMENT
l10 Ef=I.E-15 TOLERANCE ON Pf
128 Ed-1.E-10 TOLERANCE ON Pd
138 PRINT
140 PRINT "Pf '";Pf;' K coo;K;' 10 M=;
158 OPTION BASE 1
168 CON DOUBLE K,M 1INTEGERS (NOT DOUBLE PRECISION)
170 DOUBLE Ms,Ks,Js 1 INTEGERS
18O DIM Rs(5),Dn(18,5),Ts(1ia),Fs(18),Psi (5),Cbar<10, 10)
198 DIM U(18,10),V(10,10),Eig(18),Sq(10,5)
200 CON U,Prod(5,10),Es(5,10),T(5,10),Q(5,10),S(5,10),B(5,10)
218 COM A(100),G(0:108)
220 REDIM Rs(1:M),Dri(1:K, 1:M),Ts<1:K),Fs(1:K),Psi(1:M),,Cbar(1:K, 1:1<)
238 REDIM U(1:K,1:K),V(1:K, 1:K),Eig(1:K),Sq(1:K, 1:M)
241B REDIM Prod(l:M, 1:K),Es(iMt, 1:K),T(1:M, 1:K)
250 REDIII Q(1:N, 1:K>,S(1:M, 1:K),B(1:M, 1:K)
260D READ Rs(*),Dn(*),Ts(*),Fs(*) ! Dn(*) WAS FILLED IN THE ORDER:
278 S-10. 'Dn(1,fl,Dn(1,2),Dn(1,3),...,Dn(k ,m),... ,Dn(K,M)
2180 FOR Ms=1 TO N
290D SS+Rs(Ms)
30e NEXT Ms
318 FOR Msul TO N
328 Psi (Mhs)=Rs(Ns)/S
330 NEXT Ms
340 FOR Ks~l TO K
350 FOR Js=l TO K
360 Cov=FNCov(Ts(Ks)-Ts(Js),Fs(Ks)-Fs(Jiv))
370 Cbar(Ks,Js)=Cov NO~tRMALIZED COVARIANCE MATRIX
388 NEXT Js
390 NEXT Ks
488 MAT U-Cbar
418 CALL Svd(K,K,U(*),V(*),Eig(*)) IOUTPUTS: U(*),V(*),Eig(*)
428 PRINT "EIGENVALUES:"
438 PRINT Eig(*)
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440 FOR Ms=l TO M
450 T=2.*Psi(Ms)
460 FOR Ks=l TO K
470 Prod(MsKs)=T*Eig(Ks) 2 Psi Eig
480 NEXT Ks
490 NEXT Ms
500 FOR Ks=i TO K
510 FOR Ms=l TO M
520 Sq(Ks,Ms)=SQR(2.*Dn(KsM^))
530 NEXT Ms
540 NEXT Ks
550 FOR Ks-1 TO K
560 FOR Ms=I TO M
570 S=e.
580 FOR Js=1 TO K
590 S=S+V(JsKs)*Sq(JsMs)
600 NEXT Js
610 Es(Ms,Ks)=S*S I emk
620 NEXT Ms
630 NEXT Ks
640 U1=1. ! THRESHOLD INCREMENT
650 UO=-LOG(Pf)-UI THRESHOLD STARTING VALUE
660 CALL Inversfunctionl(-P?,EfU0,U1,U)
670 PRINT "THRESHOLD U =";U
680 CALL Inversfunction2(Pd,Ed,ElnoOElnol,Elno)
690 Db=10.*LGT(Elno)
700 PRINT "dB =";Db
710 END
720
730 DEF FNCov(Tau,Nu) 1 NORMALIZED COVARIANCE
740 A=LOG(2.)*.5 ! R11(Tau,Nu)/RIi(OO)
750 B=1.3
760 Cov=EXP(-A*RBS(Tau)-B*RBS(Nu))
770 RETURN Cov
780 FNEND
790
800 DEF FNPf(U) ! PROBABILITY OF FALSE ALARM
810 COM DOUBLE K ! INTEGER
820 DOUBLE Ks
830 U2=U*.5
840 Pf=T=EXP(-U2)
850 FOR Ks=l TO K-1
860 T-T*U2/Ks
870 Pf=Pf+T
880 NEXT Ks
890 RETURN -Pf - TO YIELD INCREASING FUNCTION
900 FNEND
910 I
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920 DEF FNPd(Elno)
930 COM DOUBLE K,M INTEGERS
940 COM U,Prod(*),Es(*),T(*),Q(*),S(*),B(*),A(*),G(*)
950 DOUBLE Ms,Ks,K1,P
960 To11.E-10 RELATIVE ERROR OF SUM
970 FOR Ms=I TO M
980 FOR Ks=1 TO K
990 T(Ms,Ks)=E1no*Prod(Ms,Ks)

188s NEXT Ks
1818 NEXT Ms
1020 F=i.
1030 Sao.
1040 FOR M$s= TO M
1050 FOR Ks=l TO K
1060 T=T(MsKs)
1070 Q(Ms,Ks)=Q=I.+T
1880 S(Ms,Ks)=T/Q
1090 F=F*Q
Ilse S=S+Es(Ms,Ks)/Q
1118 NEXT Ks
1120 NEXT Ms
1130 G(O)=EXP(-.5*S)/SQR(F)
1140 KI=K-1
1150 U2=U*.5
1160 T-EXP(-U2)
1170 HI=I.-T
1188 FOR Ks=I TO KI
1198 T=T*U2/Ks
1200 HI=H1-T
1210 NEXT Ks
1220 Pd=I.-G(O)*H1
1230 FOR P=I TO 100
1240 T=T*U2/(KI+P)
1250 HI=HI-T
1260 S=0.
1270 FOR Ms=I TO M
1280 FOR Ks=I TO K
1290 0=Q(Ms,Ks)
1300 IF P>I THEN 1330
1310 B(Ms,Ks)=B=I./Q
1320 GOTO 1340
1330 B(Ms,Ks)=B=B(Ms,Ks)*S(Mg,Ks)
1340 S=S+B*(T(Ms,Ks)/P+Es(Ms,Ks)/Q)
1350 NEXT Ks
1360 NEXT Ms
1370 R(P)=.5*S*P
1380 Sz0.
1390 FOR Ms$l TO P
1400 S-S+R(Ms)*G(P-Ms)
1410 NEXT Ms
1420 G(P)=G=S/P
1430 Dei=G*H1
1440 Pd=Pd-Del
1450 IF Del<Pd*Tol THEN 1490
1460 NEXT P
1470 PRINT 1100 TERMS ARE INSUFFICIENT"
1480 PAUSE
1490 PRINT "Pd -";Pd," P =;P;" El/No =";Elno
1500 RETURN Pd
1510 FNEND
1520
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1530 SUB Inersfu.nctionl(Desired,Error,X1,Del,X2>
1540 X2=X1+Del
1550 FI=FNPf(XI)
1560 F2uFNPCr(X2)
1578 IF F2>zDesired THEN 1620
1588 XI=X2
1598 X2uX24De1
1688 FlsF2
1618 GOTO 1568
1628 IF FIlzflesired THEN 1680
1630 X2-X1
1648D X1=X1-Del
1650 F2=FI
1660 F1=FHPf~(X1)
1678 GOTO 1620
1688 X&ZXI
1690 XbzX2
1788 IF F2-1itsir'ed<Desired-F1 THEN 1770
1718 T=Xl
1728 X1-X2
1730 X2-T
1748 TaFI
1758 F1=F2
1768 F2=T
1770 IF RBS(F2-Desired)(Error THEN 1870
1788 IF F2=F1 THEN 1878
1798 T=(X1I*(F2-Desired)-X2*(FI-Desired»)/<F2-F1)
1888 T=M'AX(T,Xa)
1818 TzMIN(T,Xb)
1828 X1=X2
1838 X2=T
1848 Fl=F2
1858 F2=FNPf(X2)
1860 GOTO 1778
1878 SUBEND
1888
1890 SUB Inversfunction2(Desired,Error,XI,DeI,X2)
1988 X2=XI+Del
1918 F1UFHPd(X1)
1928 F2=FNPd(X2)
1938 IF F2>=Desired THEN 1980
1940 XlIX2
1950 X2-X2+Del
1968 FI=F2
1970 GOTO 1928
1980 IF F1(=Desired THEN 2840
1998 X2-X1
2888 YV1X1-Del
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2810 F2=F1
2820 FIuFNPd(XI)
2030 GOTO 1980
2040 Xa=XI
2050 Xb=X2
2060 IF F2-Desired<Desired-Fl THEN 2130
2870 TwX1
2880 XI=X2
2890 X2=T
2100 T=F1
2110 Fl=F2
2120 F2=T
2130 IF RBS(F2-Desired)<Error THEN 2230
2148 IF F2=F1 THEN 2238
2150 T-(X1*(F2-Desired)-X2*(FI-Desired))/(F2-F1>
2168 T=MAX(T,Xa)
2170 T-MIN(T,Xb)
2188 XI=X2
2190 X2=T
2208 FI=F2
2218 F2=FNPd(X2)
2220 GOTO 2130
2238 SUBEND
2240
2250 SUB Svd(DOUBLE M,N,REAL A(*),V(*),W(*))
2260 I THIS SUBROUTINE COMPUTES THE SINGULAR VALUE DECOMPOSITION
2278 ! OF AN ARBITRARY REAL MtxN MATRIX A: A = U W Vt, M >= N.
22808 U IS MxN, V IS NxN, W IS NxN: W = DIAG(D(n)).
2298 ALLOCATE Rvl(l:N) ' NUMERICAL RECIPES, PAGES 60-64
2308 IF M>=N THEN 2330 ! A(*) IS OVER-WRITTEN
2318 PRINT "M<N IS DISALLOWED"
2320 PAUSE
2330 DOUBLE IJ,K,L,Its,Nm,Jj INTEGERS (NOT DOUBLE PRECISION)
2340 G=Scale=Anorm=O.
2350 FOR I=1 TO N
2368 L=I+I
2378 Rvl(1)=Scale*G
2380 G=S=Scale=O.
2390 IF I>M THEN 2670
2400 FOR K=I TO M
2410 Scale-Scale+RBS(A(K,I))
2420 NEXT K
2430 IF Scale=6. THEN 2678
2440 FOR K=I TO M
2450 RazA(K,I)=RAK,I)/Scale
2460 SuS+Ra*Aa
2470 NEXT K
2480 F=A(I,I)
2490 Ga-SQR(S)
2500 IF F<8. THEN G-G
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2518 M=F*G-S
2520 A(I,I)=F-G
2530 IF I=N THEN 2640
2540 FOR J=L TO N
2550 S=8.
2560 FOR K-I TO M
2570 SaS+R(K,I)*A(K,J)
2580 NEXT K
2590 F=S/H
2600 FOR K=I TO M
2610 R(K,J)=A(K,J)+F*A(K,I)
2620 NEXT K
2638 NEXT J
2640 FOR K-I TO M
2650 R(K,I)=A(K,I)*Scale
2660 NEXT K
2670 W(I)=Scale*G
2680 G=S=Scale*=.
2690 IF (I>M) OR (I=N) THEN 2990
2700 FOR K=L TO N
2710 Scale=Scale+ARS(R(I,K))
2720 NEXT K
2738 IF Scale=O. THEN 2998
2740 FOR K=L TO N
2750 Ra=R(IK)xR(I,K)/Scale
2760 S=S+Aa*Ra
2770 NEXT K
2780 FwR(IL)
2790 G--SQR(S)
2800 IF F<S. THEN G=-G
2810 H=F*G-S
2820 R(I,L)=F-C
2830 FOR KaL TO N
2840 Rvl(K)=A(IK)/H
2850 NEXT K
2860 IF I=M THEN 2960
2870 FOR J=L TO M
2880 Sue.
2890 FOR K=L TO N
2900 S=S+RA(JK)*R(I,K)
2910 NEXT K
2920 FOR K=L TO N
2930 R(J,K)=A(JK)+S*RvI(K)
2940 NEXT K
2958 NEXT J
2960 FOR K=L TO N
2970 R(IK)mA(I,K)*Scale
2980 NEXT K
2990 Rnorm=MRX<Anorm,RBS(W(I))+RBS(RvI(I)))
3008 NEXT I
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3010 FOR I=N TO I STEP -1
3020 IF I>=N THEN 3190
3030 IF G=O. THEN 3160
3040 FOR J=L TO N
3050 V(JI)=A(I,J)/A(I,L)/G
3060 NEXT J
3070 FOR J=L TO N
3880 Sao.
3898 FOR K=L TO N
3108 SuS+A(I,K)*V(K,J)
3110 NEXT K
3120 FOR K-L TO N
3138 V(K,J)=V(K,J)+S*V(K,I)
3148 NEXT K
3158 NEXT J
3160 FOR J=L TO N
3170 V(I,J)=V(J,I)=O.
3180 NEXT J
3190 V(I,I)=l.
3200 G=Rv(Il)
3210 L=I
3228 NEXT I
3238 FOR I=N TO I STEP -1
3240 L-I+I
3250 G=W(1)
3260 IF I>=N THEN 3300
3270 FOR J-L TO N
3280 R(IJ)=8.
3290 NEXT J
3300 IF G=O. THEN 3478
3310 GuI./G
3328 IF l=N THEN 3430
3330 FOR JuL TO N
3348 S=0.
3350 FOR K=L TO M
3360 S=S+R(K,I)*R(K,J)
3378 NEXT K
3380 F=S/R(I,I)*G
3390 FOR KmI TO M
3400 R(K,J)=A(K,J)+F*R(K,I)
3410 NEXT K
3420 NEXT J
3438 FOR J-1 TO M
3440 R(J,I)=R(J,I)*G
3450 NEXT J
3460 GOTO 3500
3470 FOR Jol TO M
3480 A(J,I)=O.
3490 NEXT J
3500 R(I,I)=R(I,I)+1.
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3510 NEXT I
3528 FOR K=N TO I STEP -1
3530 FOR Its=l TO 30
3540 FOR L=K TO I STEP -1
3550 Nm=L-1
3560 IF (RBS(Rv1(L))+Anorm)=6norm THEN 3780
3570 IF (RBS(W(Nm))+Rnorm)=Anorm THEN 3590
3588 NEXT L
3598 C=8.
3608 S=1.
3618 FOR I=L TO K
3620 F=S*Rvl(1)
3630 Rvl(I)=C*Rvl(I)
3640 IF (RBS(F)+Rnorm)=Anorm THEN 3780
3650 G=W(I)
3660 H=SQR(F*F+G*G)
3678 W()=H
3688 Hal./H
3698 C=G*H
3708 Sa-F*H
3710 FOR Ju1 TO M
3720 Y=A(JoNm)
3738 Z=R(JI)
3740 ARJ,Nm)=Y*C+Z*S
3758 A(J,I)=-Y*S+Z*C
3768 NEXT J
3778 NEXT I
3780 Z=W(K)
3790 IF L<>K THEN 3868
3888 IF Z>=0. THEN 3850
3818 W(K)=-Z
3820 FOR J=1 TO N
3838 V(J,K)=-V(J,K)
3848 NEXT J
3850 GOTO 4398
3860 IF Its<30 THEN 3898
3878 PRINT "NO CONVERGENCE IN 30 ITERATIONS"
3880 PAUSE
3898 X=W(L)
3900 Nm=K-1
3918 Y=W(Nm)
3928 G=Rvl(Nm)
3938 H=Rvl(K)
3940 F=((Y-Z)*(Y+Z)+(G-H)*(G.H))/(2.*H*Y)
3950 G=SQR(F*F+I.)
3968 Ra=RBS(G)
3978 IF F<8. THEN Ra=-Ra
3980 F=((X-Z)*(X+Z)+H*((Y/(F÷Ra))-H))/X
3998 C=S=I.
4880 FOR JwL TO Nm
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4010 Ij~
4020 G=Rvl(l)
4038 YUW<I)
4040 H=S*G
4050 G=C*G
4060 Z=SDR(F*F+H*H)
4870 Rvi(J)=Z
4080 C-F/Z
4090 SrnH/Z
4100 F-X*C+C*S
4110 G--X*S+G*C
4120 HMY*S
4130 Y=Y*C
4140 FOR Jju1 TO N
4150 X=V(Jj,J)
4160 Z=V(JjoI)
417e V(JjoJ)=X*C+Z*S
4180 V(Jj,1)=-X*S+Z*C
4199 NEXT Jj
4200 ZwSQR(F*F+H*H)
4210 14(J)=Z
422e IF Z=O. THEN 4260
4230 Zx1./Z
4240 C=F*Z
4250 S=H*Z
4260 F=C*G+S*Y
4270 X=-S*G+C*Y
4280O FOR Jj=1 TO M'
4290 YUA(Jj,J)
4300 ZUR<Jj,I)
4310 A(Jj,J)-Y*C+Z*S
4320 ACJJ, I)Z-Y*S+Z*C
4330 NEXT Jj
4340 NEXT J
4350 Rvl'CL)uO.
4360 Rvi(K)inF
4370 W(K)-X
4380 NEXT Its
4390 NEXT K
4400 SUBEND
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APPENDIX E. SOLUTION OF GENERALIZED EIGENVALUE PROBLEM

C and B are NxN real symmetric matrices, and B is positive

definite. The important alternative case where B is not positive

definite will be undertaken in (E-14) and sequel. We want the

normalized modal matrix Q and the eigenvalue matrix A of the

generalized characteristic-value problem (18; page 74]

encountered in (B-10), namely

C Q = B-1 Q A. (E-1)

Then, it is known that [18; pages 74 - 77]

QT B-1 Q = I and QT C Q = A (E-2)

which is a simultaneous reduction of two matrices to diagonal

form. Alternatively, when both equations in (E-2) are satisfied,

then (E-1) follows.

The first relation in (E-2) sets the scalings on the eigen-
T B-1Vn=1fr1 n .

vectors JVnj of Q; in fact, it readsn B V = 1 for 1 VnnN.

An alternative scaling choice would be to make the eigenvectors
of unit length, that is, VT V = 1. However, this would result

n n

in QT B-1 Q becoming a diagonal matrix with non-unity elements;

this latter alternative is not adopted here. Therefore, the

eigenvectors JVn} in (E-2) do not have unit length, that is,
T

Vn Vn # 1 generally. The eigenvectors are unique within their

polarities.

A procedure for determining Q and A is now presented. Solve

for the square root matrix S in

B = S ST (E-3)

123



TR 10041

where S need not be symmetric. For example, the lower (or upper)

triangular square root matrix will suffice. Then there follows

B-1 = S-T S- 1  and ST B- 1S = I . (E-4)

Now compute NXN matrix

A = S ,T C S (E-5)

which is symmetric. Solve the standard eigenvalue problem

A U = U y (E-6)

for normalized modal matrix U and diagonal eigenvalue matrix y.

Then it is known that these solutions satisfy

UT U = I and UT A U = y. (E-7)

It will now be shown that

Q = S U and A = y (E-8)

are the desired matrix solutions to (E-1). Substitution of

(E-8) in the first relation in (E-2) yields

QT B- 1Q = UT ST B- S U = UT I U = I , (E-9)

where we used (E-4) and (E-7). Also, substitution of (E-8) in

the second relation in (E-2) yields

QT C Q - A = UT ST C S U - y = UT A U - y = 0 , (E-10)

where we used (E-5) and (E-7). Thus, both relations in (E-2) are

satisfied by the matrix assignments in (E-8).
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In summary, in order to solve (E-1): compute square root

matrix S in (E-3); evaluate matrix A via (E-5); solve (E-6) for U

and y; determine Q and A by means of (E-8). Notice there is

never any need to compute inverse matrix B- 1 ; however, matrix B

must be positive definite for the operation in (E-3) to succeed.

We now present an example which illustrates many of the

quantities considered above; let matrices

B = 0, C = (E-11)
102 18

Then the solutions of (E-1) are

A = 1  Q = j. (E-12)
0 12 1 -1

The column vectors of Q are not orthogonal; in fact,

Q T Q=1 31(E--13)3 51

Rather, the orthogonality relations of (E-2) may be readily

verified to be satisfied in this example, namely QTB-i Q 1 I and

QT C Q=A.
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GENERAL SYMMETRIC MATRIX B

In attempting to solve (E-1) for Q and A, the square root of

matrix B was required in (E-3). If B is not positive definite,

complex solutions would be required there. Here, we will solve

the alternative generalized characteristic-value matrix equation

encountered in (B-44), namely

B Q = C-1 Q A, (E-14)

where covariance matrix C is real symmetric and positive

definite, while matrix B is real symmetric but can be indefinite.

The solutions Q and A will then satisfy the relations

QT C-1 Q = I and QB Q = A . (E-15)

To this aim, first solve for the square root matrix S in

C = S ST. (E-16)

Then

-1 -T -1 T -1C =S S and S C S1. (E-17)

Next, compute the NxN matrix

A = ST B S , (E-18)

which is symmetric. Solve the standard characteristic-value

equation

A U = Uv (E-19)

for U and y, for which we have orthogonality properties
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UT U = I and UT A U = y. (E-20)

It will now be shown that the solutions to (E-14) are

Q = S U and A = y . (E-21)

Substitution of (E-21) in the first relation in (E-15) yields

QT C-1 Q = UT ST C-1 S U = UT I U = UT U = I , (E-22)

where we used (E-17) and (E-20). Similarly, substitution of

(E-21) in the second relation in (E-15) yields

TB Q - A = UT ST B S U - y = UT A U - y = 0 (E-23)

where we used (E-18) and (E-20). Thus, both relations in (E-15)

are verified by solutions (E-21).

In summary, in order to solve (E-14): compute square root

matrix S in (E-16); evaluate matrix A according to (E-18); solve

(E-19) for U and y; determine Q and A by means of (E-21). This

procedure requires covariance matrix C to be positive definite.

Inverses of matrices C, B, or S are not required.

(If square root matrix S in (E-16) is taken lower triangular,

then S-1 is also lower triangular and can be very easily computed

directly from S. This enables calculation of inverse matrix C-1

by means of (E-17), if desired.)
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INTERRELATIONSHIPS OF SOLUTIONS

Here we shall relate the solutions Q and A of (E-1) to the

solutions Q and A of (E-14). In particular, we maintain that the

specific relations are

Q = Q-T AQ and A = A. (E-24)

To verify this claim, substitute (E-24) into the first relation

in (E-2) and obtain

QT B-1 Q _ I = A½ Q-1 B-1 Q-T A- _ I = A- A-I Aý _ I = 0 , (E-25)

where we used (E-15). Similarly, substitution in the second

relation in (E-2) yields

QT C Q - A = A½ Q-1 C Q-T A½ _ A = A½ I Aý - A = 0 , (E-26)

where we also used (E-15). Thus, both relations in (E-2) are

satisfied by interrelationships (E-24).

The connection between eigenvectors is obtained by utilizing

(E-15) to give

Q-T = B Q A- . (E-27)

Substitution in (E-24) then yields

Q = B Q A0 ; that is, Vn = B Vn xn • (E-28)

The eigenvalue relation is, directly from (E-24),

Xn = A . (E-29)
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Finally, the connection between vectors E and A in (B-18) and

the corresponding vectors E and A in (B-51) and (B-52) is as

follows: the use of (E-28) in the first relation in (B-18) yields

£n VT E = n% VT a E = X n (E-30)

the last relation based on (B-59). And substitution of (E-28) in

the second relation in (B-18) yields

an =VTn B-1 A - An T B B-I1 A = A hn an, (E-31)

using (B-60).

It can now be seen that the use of (E-29) - (E-31) in

characteristic function (B-20) immediately converts it to (B-54).

This is a direct confirmation of the fact that the characteristic

function of q is unique, regardless of how derived. However, the

recommended procedure is that given in (B-43) and sequel, because

it is more general, allowing symmetric matrix B to be indafinite.

In fact, relation (E-28) is valid only when all eigenvalues Xn

are positive. If this is not the case, although Q cannot be

found using real arithmetic, the technique summarized under

(E-23), for determining solutions Q and A of (E-14), is still

valid and can always be used with real arithmetic. Eigenvalues

{Ln} can take on positive and negative values. The only

restriction is that symmetric matrix C be positive definite.
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APPENDIX F. STATISTICS OF REAL BILINEAR FORM

Suppose we encounter real bilinear form [22; (13.5-1)]

b = XT A Y , (F-i)

where random vector X is Mx1, random vector Y is Nxl, and

arbitrary matrix A is MXN, all quantities being real. We allow

random vectors X and Y to be arbitrarily correlated with each

other, but to have zero means here; generalizations to nonzero

means can be made along the lines of appendix B.

Let L = M+N and define Lxl real vector

Z= 1'1 (F2

Let LxL matrix

B = JBT (F-3)

Then (F-i) becomes

b = ZT B Z , (F-4)

which is a quadratic form in L variables; L = M+N. Matrix B is

symmetric but not positive definite. Letting r = min(M,N),

numerical investigation has revealed that B has r positive

eigenvalues P1,...'Pr; r eigenvalues which are their negatives

-p,...,-ir ; and the rest zero.

The mean of real random vector Z is zero, and its (arbitrary)

LxL covariance matrix is
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- - TC - Z Z TiX XT y T] X X .C (r-5)

Y X T Y xy yy

which is symmetric. C is also nonnegative definite, because

vT c v = v T Z Z V-TZ 0 (F-6)

for any LxI vector V. We presume that C is positive definite.

In order to convert quadratic form (F-4) to diagonal form

with uncorrelated variates, we first solve the LxL generalized

characteristic-value equation (see (E-14) and sequel)

-1
B Q = C Q A (F-7)

for LxL matrices Q and A. Then, we have properties (18; pages

74 - 77]

QT C- Q = I and Q B Q = A = diag[k 1 • • . XL] • (F-8)

Now let linearly transformed random vector

W = Q-1 Z = [w1 . . . WL] ; Z = Q W . (F-9)

Vector W also has zero mean. Its covariance matrix is

W WT -Q- 1 zT Q-T = Q- C Q-T _ I , (F-10)

upon use of (F-5) and (F-8). Also, bilinear form (F-4) becomes

ZT B Z = WT Q T T A L - X 2 (F-11)

k=1
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where we used (F-9) and (F-8). Thus, b is a sum of L weighted

squares of uncorrelated zero-mean unit-variance random variables.

Notice that not all eigenvalues XAkI need be positive; some can

be zero and some can be negative.

If random vectors X and Y are joint-Gaussian, then vector W

in (F-9) is also Gaussian, with probability density function

L 2F
p(W) = FT((2n)-½ exp(-wk/ 2 )) , (F-12)

k=l

based on (F-10). The characteristic function of bilinear form b

in (F-li) is then

L

= exp(itb) =T dwk (2n)-½ exp[-w /2 + i±CAkWk2)

= T(i - i2Xk)J . (F-13)

Since only the eigenvalues |ykk of A in (F-8) are required to

evaluate characteristic function (F-13), it is not actually

necessary to determine the eigenvectors Q in matrix equation

(F-7). In fact, by a procedure identical to that given earlier

in (B-55) - (B-58), it may be shown that |kk are the eigenvalues

of nonsymmetric LxL matrix B C. Reference to (F-3) and (F-5)

reveals that this latter matrix is given by

AC T AC
1 X yy (F-14)
2A TC A TC Ixx xy.
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The rank of matrix B C is generally R = 2 min(M,N); that is, the

product for characteristic function fb(&) in (F-13) will contain

only R terms, which is less than L except when M = N.

The claim for the rank of B C is based upon the following

observation. Suppose that M I N; then (F-i) can be written as

M N M
b = = 5 Xm a mn yn = ) Xm Vm (F-15)

where (linearly transformed) Gaussian random variables

N
vm => amn Yn for 1 & m & M. (F-16)

n=1

Thus, b is a sum of products of just 2M correlated random

variables. Therefore, the characteristic function in (F-13) can

have no more than 2M terms. Direct numerical evaluation of the

eigenvalues {Xk) of nonsymmetric LXL matrix B C in (F-14) has

verified that its rank is generally R = 2 min(M,N), and that the

R nonzero eigenvalues can be positive and negative with no

obvious interrelations. (If N < M, the summation order in (F-15)

can be reversed, thereby giving b as a sum of products of 2N

correlated random variables, and hence, rank 2N for matrix B C.)

The generalization of (F-i) to the form

b T- 1 X+ XA2 Y +Y A 21X + A22 Y (F-17)

can be directly fit into the framework of (F-2) and (F-4) if we

generalize definition (F-3) to LXL matrix
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B - IAl1 A121 (F-18)
IA 21 A 22J

We can then replace this B matrix by its symmetric part, since

only the symmetric part of B is active in quadratic form (F-4).
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APPENDIX G. CHARACTERISTIC FUNCTION OF MOST GENERAL

COMPLEX FORM WITH FIRST-ORDER AND SECOND-ORDER TERMS

Let Z be a complex Nxl random vector with real and imaginary

parts X and Y; that is, Z = X + i Y. Let D1 and D2 be complex

Nxl constant vectors. Let C1 , C2 , C3 , C4 be complex NxN constant

matrices, which need not be Hermitian or symmetric.

The most general first-order complex form is
=T T Z*D2T T

f D1 Z + D2  = (D1 + D ) X + i(D 1 - D2 )T Y = W , (G-i)

where

H = , 2 W = I1. (G-2)
i(D 1 - D2 )

H is a complex 2NX! constant vector and is completely arbitrary;

that is, every complex element of H can be independently

specified. W is a real 2Nxl random vector.

The most general second-order complex form is

f2 = z ZH C1 + ZH C2 Z + ZT C3 Z + ZT C4 Z = W MW, (G-3)

where

C 1 + C2 + C3 + C4  i(C 1 - C2 + C3 - C4 )

M = (G-4)

-i(C1 + C2 - C3 -C 4 ) C1 - C2 - C3 + C4

M is a complex 2NX2N constant matrix, which need not be

Hermitian. M is completely arbitrary; that is, every complex

element of M can be independently specified.
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The pertinent statistics of real vector W are

W IVl K = Cov(W)= (W-W) (W - W)T =

= I [xT T yT T] Kyx K1 ;Y

Here, R is a real 2Nxl constant vector, while K is a real 2Nx2N

symmetric constant matrix.

The general complex form of interest is

c = f2 + fl = WT M W + H WT . (G-6)

For X and Y joint-Gaussian, W is Gaussian with probability

dens ity function

p(W) - (2n)-N (det K)-½ exp(-I(W - W)T KX- (W - W)) . (G-7)

The statistical quantity of interest is, for complex scalar a,

the characteristic function of complex random variable c in

(G-6); in particular, the characteristic function is defined here

as the average of the exponential

c C(a) = exp(ac) = exp(a WT M W + a HT W) = (2n)-N (det K)-½ x

x J dW exp{- I(W --- T (W + a wT M W + a HT W)=

=d-h exp(t) ,(G-8)

where
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d = det(I - 2 a M K) - det(I - 2 a K M)

1 ;T K-i I VT (I - 2 a K M)-1 K V,

V = K-1W + a H• (G-9)

K is a real 2Nx2N matrix, M is a complex 2Nx2N matrix which need

not be Hermitian, W is a real 2Nxl vector, H and V are complex

2Nxl vectors, and a is a complex scalar.

In general, we must invert 2Nx2N real symmetric matrix K.

Also, we must invert 2Nx2N complex matrix I - 2 a K M, which need

not be Hermitian, and which depends on argument a. The average

of the exponential in (G-8) is the type of operation encountered

in appendix C.

If Y = 0, Y = 0, D1 = 0, D2 = 0, then W = 0, H = 0, V = 0,

t = 0, and we need only evaluate complex determinant

d - det(I - 2 a K M), which depends on a.
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SPECIAL CASE: Y = 0

Then complex forms

f1 2 (Dj + D2 )T X D X ,

f xT (C + C + C + C) X XT C X

c = XT C X + DT X . (G-10)

Matrices C and D are complex and completely arbitrary.

Identify in the subsection above,

2N 4 N , W 4 X, M 4 C , H 4 D K 4 K xx (G-11)

thereby getting characteristic function

fc(a) = exp(ac) = d-½ exp(t) , (G-12)

where

d = det(I - 2 a Kxx C)

t 1 (I - 2 T K C)-1 K ,

V =K- X + a D (G-13)
xx

Kxx is a real NxN matrix, C is a complex NXN matrix which need

not be Hermitian, X is a real Nx1 vector, D and V are complex

Nx1 vectors, and a is a complex scalar.
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JOINT CHARACTERISTIC FUNCTION OF REAL AND IMAGINARY PARTS OF c

For the general complex form c in (G-6), the joint

characteristic function of cr and ci is, for real & and <,

a exp(i& cr + it, ci) . (G-14)

But

Sc. + ý. c~ W ~T Mr W + H T W) + C(WT Mii W + HT W)

=WT R W + T W, (G-15)

where real matrices

H * • Mr + ý Mi H H r H + ý Hi " (G-16)

Therefore, identifying a 4 i, M 4 R, H 4 H, in (G-8), there

follows the joint characteristic function of cr and ci as

f(&,ý) = expfi WT M + i •T W) = d-½ exp(t) , (G-17)

where

d = det(I - i 2 M K) = det(I - i 2 K M)

t = -wT K-1 W + 2 VT (I - i 2 K M)- K V

V = K-1 W +iH. (G-18)
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ABSTRACT

A whiteness measure of a random number generator is defined

as the sum of squares of all the off-zero elements of the sample

covariance function of a finite segment of data of length K.

The mean and variance of this whiteness measure are evaluated

exactly, while its cumulative and exceedance distribution

functions are determined by simulations. It is found that the

variance of the whiteness measure must be broken into the two

separate cases where K is even versus K is odd. This

necessitates the analytic evaluation of some high-order moments

in order to determine the variance exactly.
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STATISTICS OF A WHITENESS MEASURE

INTRODUCTION

When a random number generator is designed to yield zero-mean

independent random variables, one useful test of its validity is

afforded by its sample covariance function. This quantity would

ideally be zero for all delays except the origin value. However,

in practice, due to the finite length of data generated and used

to test the generator, the sample covariance function is not

identically zero but fluctuates about zero. A measure of the

whiteness of the generator is afforded by the sum of squares of

all the off-zero elements of the sample covariance function,

relative to the square of its origin value. This measure was

suggested in [1; appendix C].

In this report, we investigate the statistics of this

whiteness measure, including its cumulative and exceedance

distribution functions and its mean and variance. Since a

sample covariance involves products of data values, the squared

covariance depends on fourth-order products of the data, and the

variance of this sample quantity involves eighth-order products

of the data under various delays. It is this latter high-order

product which greatly complicates the statistical analysis and

which necessitates a roundabout procedure for exact evaluation of

the variance of the whiteness measure. The probability

distributions of this measure are determined by simulation for

two types of random variables, uniform and Gaussian.

1/2
Reverse Blank
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MEAN AND VARIANCE OF WHITENESS MEASURE

Consider real data sequence x 0 , x1 , ... ,XK_1 of K data

points which are independent and identically distributed (IID)

with a symmetric probability density function about zero. This

zero-mean sequence will have all odd-order moments equal to zero.

Also, assume that the data are scaled to have unit variance and a

fourth moment of value F; that is

E(x2) = 1, E(x'j = F, for 0 • k • K-1 , (1)

where E denotes the expectation. This situation includes the

uniform random number generator and the Gaussian random number

generator, for example. For the usual uniform random variable

distributed over (-½,½), we have scaled its output by f12 for

present purposes in order to realize variance 1. Thus, F = 1.8

for the uniform case, while F = 3 for Gaussian numbers.

The sample covariance of the available data is defined as

1 xk xkn for all n. (2)
k

Ideally, we might like to have sequence IRn ) equal to zero for

n 4 0. However, this is never the case, although the {Rn I for

n P 0 are much smaller than R0 when K is large. The mean value

of R0 is easily seen to be 1, by reference to (1). A measure of

the whiteness of data sequence fxk} is afforded by the sum of

squares of all the off-zero elements of sequence IRn }:

WK Zn 2 Rn for K Z 2 • (3)

3
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MEAN OF WHITENESS MEASURE WK

The mean value of random variable R2 follows from (2) asn

EnR•)= E[( _ 1 xk Xk-n X.jX n=
K k J

=-VEE E xkXkfnxj xjEn (4)
K 2 k

Since we are only interested in values of n > 0 according to (3),

the expectation in (4) is nonzero only when k = j; here, we are

utilizing both the lID and the zero-mean properties of IXk1.

Then, (4) becomes, upon use of (1),

E[R) =L K-i K - n for 1 & n I K-I (5)

K k=n K

(For completeness, E R2) = (F + K- I)/K; Variance(R0 ) = (F-1)/K.
Thus, R0 clusters around 1 as K 4 •, while Rn 4 0 as K 4 for

fixed n # 0.) Use of result (5) in (3) yields the desired mean

value of whiteness measure WK as

2 K-i K- 1
E(WK) =2 (K - n) K (6)

Kn=1

Notice that this mean value is independent of fourth-moment F and

that it approaches 1 as K 4 c. Recall that E(R 0 ) = 1 for

comparison.

4
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VARIANCE OF WHITENESS MEASURE WK

The direct evaluation of the variance of random variable WK

in (3) would require a very tedious procedure. Whereas the mean

evaluation in (4) only encountered fourth-order products of

delayed versions of IXk1' we would now encounter eighth-order

products, requiring a complicated counting procedure to account

for all the various types of terms. Specifically, from (2) and

(3), we have whiteness measure

2 K-I K-i K-i
2W = xkZZZZZ'j x -nWK K n kn Xk XkKn nj=n (7)

leading to mean square value

K(W2 = 4 K-i K-i K-i K-i

SK n=i m=1 k=n j=n q=m p=m

E (xk X k-n 'j x j-n Xq Xq-m Xp Xp-,) (.

Not only would this eighth-order average have to be evaluated for

all possible values of n,m,k,j,qp, but the sixth-order summation

would then have to be conducted. The only reasonable case that

can be evaluated from (8) is that for the term proportional to

F2 . It is obtained only for the special choices n = m and

k = j = q = p; then the right-hand side of (8) reduces to

4 K-i 2 4 K-i 2 = 2(K - 1) F2

4 nF 4n =-• (K - n) F3 . (9)
K n=1ik=n K nlK

Notice that moments of IxkI above the fourth need not be known.

5



TR 10237

The difficulty of attempting to evaluate (8) directly forces

us to attack the problem from a different aspect. Specifically,

we adopt a shortcut to obtain, exactly, the variance of whiteness

measure WK. First, observe from (8) that the mean square value

of WK contains a denominator of K4. Secondly, it has been

observed from simulations that the variance of WK goes to zero

proportional to I/K for large K. Therefore, the form of the

variance, VK, of random variable WK must be

3A K + B K + C K + D2
VK = Var(WK) = K4 K , (10)

where A, B, C, D are unknown constants. In order to determine

these four constants, we will evaluate, exactly, the variance VK

of WK for a sufficient number of low-order values of K, and then

solve the four simultaneous linear equations yielded by (10).

For convenience, we define the sums

K-I
+n = Xk Xk-n for 1 S n S K-1 . (11)

Then

R = • for 1 S n K-1 , (12)

as seen from (2). The whiteness measure in (3) then takes the

form

2 K-I2

WK 2 K + 2 for K Z 2 . (13)

For K = 1, there are no terms in the sum, yielding W1 = 0.

6
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SPECIAL CASE K = 2

We have, from (11) and (13),

22 1 2 2+ 2= X1 x 0 ' W2 = 4* 1 2 xIx 0 . (14)

Therefore, upon use of the IID property of the IXkI and (1),

2(4 4 1 2 (15

The variance of W2 then follows as

V2 = Var(W2 ) = E(W2 ) - E(W 2 )2 = 1(F- 2 J , (16)

where we used (6).

SPECIAL CASE K = 3

The procedure for the remaining cases is similar to that

detailed above for K = 2; therefore, the following presentation

will be abbreviated, and only the main results will be listed.

We have

S= Xl x 0 + x 2 Xl 2 = x2 x 0 , (17)

= i1 2 + 21 x2 =x + x2+ ,2x2 (18)

9 2 1x91 0  2)x x2 20 2

W 2 [x4xo 4 + x4x +2 x2 (X+ x)2 x 2 xj 2. (19)

The mean value of (19) is given by

7



TR 10237

EW) = 4(F(F + 6 + F) + F2 + 2(F + F)) 4 (3F2 + 10F) . (20)

Finally, the variance of W3 is

V3 = 4(3F2 + 1OF - 9) . (21)

SPECIAL CASE K = 4

In this case, we have

1 = Xl x0 + x 2 X l + x3 x2 ' 2 -= x 2 x 0 + x 3 X1 ' 3 =x3 x 0

(22)

W= 2[I + +22 2 +] + (23)

64W2 4 + +4 + +4+ 2 +2 +2 + 2 +2 +2 + 2 +2 +2 (4

64 14 *~ 2 3 +1 +2 1 3 +2 +3 (4

The mean value of (24) will be found in stages. The six

components of (24) have the following average values:

E +)= E (x4 x4) -F 2 
,(25)

E(+2 +2) = Ex x(x2 x2 +X x) 2)-= F + F = 2F (26)

E(+2 +2) = +2x x2(x1 xO + x2 x1 + x3 x2)2) =F+1+F =2F + 1
(27)

E(4 = E((x 2 x0 + x3) 4 ) = F 2 + 6 + F2 = 2F 2 + 6, (28)

8
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E(+2 +2) = E((x 2 x0 + 2 (x x + x x + x x 2) =

= EI[x2 x 2 + x2 x2 + 2 x x X x 0] [x2 2 + x,2 2 +

H20 3 1 3 2 1 [ 1  0~ 2 1

+ x2 x2 + 2 x x2 x0 + 2 x3 x x2 x0 + 2 x3 x x ) =

= F + F + F + F + F + F + 4 = 6F + 4 , (29)

2 = x2(x + x 2 ) + x2 x 2 + 2 x3 x 2 Xl(X 0 + x2 ) , (30)

÷•= +x4 4  ~ 6
4(X0 + x2)4 + x 3 x4 + 6x x 2 x2(x 0 + x 2 ) +

3 3 2 33210 2

+ 4 x 3 x2 x3(x 0 + x2 )3 + 4x + 3 , (31)3 2 1 0 2 3 2 x1(x0 +x 2)

E(+4) = F(F + 6 + F) + F2 + 6(1 + F)= 3F 2 + 12F + 6. (32)

Combining these results into (24), we have mean square value

E(W2)= 1(3F 2 + 16F + I1) (33)

and variance

V '(3F2 + 16F - 7) (34)

The analytical derivations of V5, V61 V71 V8 are deferred

to appendix A due to their lengthy calculations and need for a

shorthand notation. It will turn out that we also need all of

these latter results when we find the constants A, B, C, D in

variance expression (10).

9
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GENERAL DETERMINATION OF VARIANCE OF WK

The general form for the variance VK of whiteness measure WK

is given by (10) for arbitrary K and is repeated below:

A K3 + B K + C K + D

K+KK 4 C +
VK =Var(WK) = K4  .(35)

However, analytic determination of VK for K - 2, 3, 4, 5, 6, 7, 8

(see appendix A also) have revealed that separate forms like (35)

must be employed for K even versus K odd. That is, two different

sets of constants A, B, C, D apply in the even versus odd cases

of K. The available analytic results for VK (above and in

appendix A) are summarized below:

V1 = 0 (see the line under (13)) , (36)

IF = .(F 2 - i) , (37)

V3 = 4(3F + 10F - 9) , (38)

W= I(3F2 + 16F - 7) , (39)

V5 = 6 5 (5F2 + 38F - 1i) (40)

V6 = I(15F 2 + 144F - 23) (41)

V7 = 4[21F 2 + 246F - 23) (42)

V8 = (7F2 + 96F - 3 (43)

10
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If we take K equal to the odd values 1, 3, 5, 7 in (35) and

use results (36), (38), (40), (42), we obtain four simultaneous

linear equations for the constants A, B, C, D. Their solution

leads to the following expression for the variance VK of WK:

VK= (A• K 2 +B K +C for K odd, (44)
KK4

where

4 2 3A =4F , -32F 4F-• 3  C = - 4F + 8 . (45)

When (45) is substituted into (44), the variance expression can

be rearranged in terms of powers of F:

VK K- 1 K F + 2(K 2 _-K1)F + .1(2K2 _ 19K+12)) for K odd .(46)K4 2

The F2 term here confirms (9), as anticipated.

If we take K equal to the even values 2, 4, 6, 8 in (35) and

use results (37), (39), (41), (43), we obtain four different

simultaneous linear equations for the constants A, B, C, D.

Their solution leads to the following expression for the variance

VK of WK:

VK = (A K2 + B K + C) for K even, (47)

where
A= 4F 2 62

A=4F+ B=2F2 - 8F 14, C =-2F2 + 2 " (48)

11
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When (48) is substituted into (47), the variance expression can

be rearranged in terms of powers of F according to

VK = 2[(K-I)F2 + 2K(K-2)F + 1(2K2 -21K+31)] for K even . (49)

Again, the F2 dependence in (9) is confirmed.

The asymptotic behavior of variance VK for large K is given

by

VK - (4F + • as K4 (50)

for both K odd and K even. This is due to the fact that constant

A in (35) is identical for the odd and even cases; compare (45)

and (48). Thus, whiteness measure WK tends to cluster around 1

as K 4 -. Recall that R0 4 1, while Rn 4 0 for fixed n, as K 4 w.

The end results for variance VK of whiteness measure WK are

given by (44) and (47), or by (46) and (49). Plots of VK for the

uniform random variable and the Gaussian random variable IxkI are

displayed in figures 1 and 2, respectively. A short tabulation

of VK is given in table 1 for the uniform, Gaussian, exponential,

and alternating random variables IXk]. The probability density

functions of Ix k] for these four cases are, respectively,

Pu (x) = .5/V3 for IxI < if3 , F = 1.8 ; (51)

Pg(x) = (21)-½ exp(-x 2/2) , F = 3 ; (52)

1
Pe(x) = 7 exp(-i2lxl) , F = 6 ; (53)

Pa (x) = 6 6(x-1) + . 6(x+l) , F = 1 . (54)

12
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A short table of the variances for these four examples is

given below. For the alternating example, xk = ±l and F - 1,

whiteness measure W2 for K = 2 is always equal to 1/2, thereby

leading to variance V2 = 0. The smallest possible example of F

is 1, as realized in the alternating random variable case.

Table 1. Variance VK of Whiteness Measure WK

K Uniform Gaussian Exponential Alternating

2 .56 2. 8.75 .0
3 .92444 2.37037 7.85185 .19753
4 .985 2.125 6.15625 .375
5 .94208 1.8944 5.0816 .4096
6 .87901 1.67901 4.26235 .41975
7 .81273 1.50604 3.68013 .40650
8 .75188 1.35938 3.22266 .39063
16 .45117 .75586 1.60986 .25977
32 .24569 .39722 .79987 .14771
64 .12804 .20346 .39808 .07852
128 .06534 .10295 .19850 .04045

If we combine (47) with the multiplied-out version of (44),

the variance VK can indeed be written in the form (35) for all K,

where the constants A, B, C are as given in (48), but constant D

must be taken according to the two different values

S0 for K even5D=. (55)
4(F - 2) for K odd J

Notice that, despite (8) involving eighth-order products, nothing

above fourth-order moment F of [Xk1 is required in these results.

14
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PROBABILITY DISTRIBUTIONS OF WHITENESS MEASURE

The direct evaluation of whiteness measure WK, according to

its definition (3) in conjunction with (2), is very time

consuming for large K, due to all the multiplications required.

An attractive alternative, in terms of fast Fourier transforms,

was derived in (1; appena.x C] and is employed here; the program

utilized is listed in appendix B. The key relation relative to

(3) is [1; (C-5)]

M- 4 M~-1 2 121
WK = IXmI _ IXm2 (56)K22 m=0 [m=0 (6

where M is the size of the fast Fourier transform X m I of data

IXk0. The only restriction on M is that we must use M k 2K - 1;

then, the right-hand side of (56) is independent of M. (For

K = 1, Xm = x 0 for 0 1 m • M-1, leading to W1 = 0, as noted under

(13).) Again, notice that the whiteness measure WK depends on

fourth-order products of the data or its transform.

The cumulative distribution function (CDF) and exceedance

distribution function (EDF) of whiteness measure WK,

CDF(u) = Prob(WK < u) , EDF(u) = Prob(WK > u) , (57)

for the case where data IXkl is uniformly distributed over -V"3,V3

[see (51)], are displayed in figures 3 - 10 for K = 2, 3, 4, 8,

16, 32, 64, 128, respectively. These results were determined by

using at least one million trials for WK as defined in (56). The

15
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exceedance distribution function for small K has a cusp near zero

argument which disappears for larger K. However, random variable

WK does not approach Gaussian as K increases; rather, as shown in

figure 10 for K = 128, the right-hand tail appears to approach

exponential behavior. For a bounded random variable, lXkl < B,

the value of WK is bounded according to

(K - 1)(2K - 1) B4 . (58)
W K < 3K

In the case of the uniform random variable xk, where B = V3, (58)

yields 4.5 for K = 2, 10 for K = 3, and 15.75 for K = 4.

Although the mean of W128 is 127/128 and its variance is

V1 2 8 '.06534, the standard deviation of W128 is 0.256; this

leads to the possibility of large values of W128 on occasion.

For example, figure 10 shows that the whiteness measure can reach

a value of 1.8 or larger about 1% of the time. If a candidate

uniform random number generator has probability distributions for

WK which differ significantly from figures 3 - 10, it is suspect

and should be more thoroughly investigated before further use.

The corresponding cumulative and exceedance distribution

functions of the whiteness measure WK for a Gaussian random

number generator [see (52)] are displayed in figures 11 - 18 for

K = 2, 3, 4, 8, 16, 32, 64, 128, respectively. The first

observation to make is that the positive tail of WK can now reach

much larger values when K is small. However, for the larger

values of K, the probability distributions of WK appear to be

approaching a common behavior, regardless of the distribution of

the underlying data {xkl; compare figures 10 and 18 for K = 128.

16
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SUMMARY

The statistics of a whiteness measure, for testing a random

number generator, have been investigated in terms of the mean,

variance, and probability distributions. The mean and vaiiance

results are exact and have been borne out by numerous simulations

for different noise sources IXkI and data sizes K. These results,

for whiteness measure WK defined in (3), are summarized below:

K 1 1 A K3 + B K + C K + D2
E(WK) = K VK = Var(WK) = K4 , (59)

where

A= 4F +4 B =2F2  8F - 14, C =-2F 2 + 62 foralK

f 0 for K event
while D = . (60)

14(F - 2) for K odd )

The mean of whiteness measure WK is independent of fourth-order

moment F, while the variance of WK depends on F, but not on sixth

or eighth-order moments of data Ixk). That is, the eighth-order

product encountered in the general mean-square expression (8)

never requires knowledge higher than fourth-order for its

evaluation. This result applies for a symmetric zero-mean

probability density function for unit-variance data Ixk0.

The cumulative and exceedance probability distributions were

determined by simulations involving more than one million trials

each and therefore have good reliability approximately down to

the .0001 probability level.
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APPENDIX A. DERIVATION OF VARIANCE OF WHITENESS MEASURE WK

The variances V of whiteness measure WK for K = 2, 3, 4 were

derived in (14) - (34) in the main text. We now present the

derivations for the remaining cases, K = 5, 6, 7, 8, that are

necessary in order to determine VK for all K.

SPECIAL CASE K = 5

1 =x1 x0 + x 2 'I + x3 x2 + x4 X 3 ' +4 = x 4 x 0

Sx +x 3 Xl +x 4 x 2 x 3  x 3 x0 + x 4 x, (A-1)

+2 2 2 0 + 42 tW= Z1+ 2 + + 2 ,+ + 2~ + 2 (A-2)

625 2 4++ 4 + 4+ 2 2 2 2 2+2+2+ 2+2+
4 W 5  1i+2++3+ 4 +1 2+21+3+2 1+4

+ 2 +2 +2 + 2 2 2 + 2 2 +2 (A-3)

+2 ~3 +2 "434

The component averages required are developed in detail as

follows:

= E(x 4) =F 2  (A-4)

E?(+ z +2) =E (x 2 x 2(x x0 + x4 x1 )2) = F + F = 2F , (A-5)

E(+2 +2) = E(x2 x2 x)2)

x0 1x3 x1 + x2 (x0  Y

4x13 1  x2( 0  x4 ) 3 x21 (x0
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1 + (F + F) = 2F + 1 , (A-6)

E(ý2 +2) = E x2 x2[xl(x 0 + x2 ) + x3 (x 2 + x4 )]2)

4 E 0x2 x21x2(xO+x 2 ) 2 + x3(x 2 +x 4 )2+2 x 3 xl(x 0 +x 2 )(x 2 +x4 )J3

= (F + 1) + (I + F) = 2F + 2 , (A-7)

E(+4) = E Xl]4 F 2 + 6 + F2 2F 2 + 6 (A-8)

E;(2 +2) = E([x3 ]0 + x 0)] 2

E(,~~) E(1x 3 0 ~[x 3 x1 + x 2 (x 4 + x0 )1 23

0 4 10 + 2X 4  3 1 x x2(X4

E Ex2 x 2 +x 2 x 2 + 2 x x x0 xj2 x 2 + x2 (x + x0)2 +

+ 2 X3 x 2 Xl(x 4 + X0) = F + (1+F) + F + (F+l) = 4F + 2 , (A-9)

E,2 2 = E([x 3 x0 + ]2 [xl(x 2 + x0)+ X3 (x 4 + x2))=

E {x 2 x 2 + x 2 x 2 + 2 x4 x3 xI xO] x 2{x2 + x0) 2 + x 2{(x+ x2) 2 +H 3 0  X4 X1  4x 0 123

+ 2 x 3 x (x2 + x 0 )(N4 + x 2 )j)=

= (1 4 F) + F(1 + 1) + F(1 + 1) + (F + 1) + 4 = 6F + 6 , (A-10)

24[=x3 XI + x 2 (x 4++ x0 )] 4 )

- F 2 + 6(1 + 1) + F(F + 6 + F) = 3F 2 + 6F + 12, (A-1I)
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E(, ,) = 4+ x 2 (x 4 + x0 )] 2 [xl(x 2 + x 0 ) + x3(x4 + x2

=E([x2 x2 + x2(X 4 + xo) 2 + 2x x 2 Xl(x 4 + x 0 )J x

x x2 x + x0 )2 + x2 (x( + x)2 + 2 x3 x(Y 2 + x 0 )(x 4 + x2)IJ =

= F(1 + 1) + F(I + 1) +

"+ E[x2 + 2 x 4 x 0 + x 2][x4 + 2 x3 x0 + x2 x2]) +

"+ Ex2 + 2 x4 x0 + x2][x2 x2 + 2 x4 x 3+ x•JJ +

+ 4 E (x 2 (x 4 + Xo)(x 2 + xo)(x 4 + x 2 )) =

= 4F + (F + 1 + F + F) + (F + F + 1 + F) + 4(1 + 1) = 1OF + 10,

(A-12)

EI(x2+ x0 ) + x 3 (x 4 + x 2 )]4)=

E ~x41(x2 + x 0 )4 + 6 x2(x 2 ( x0 )2 x2(x 4 + x 2 ) + x4(x 4 + x2)4

= F(F + 6 + F) + 6 E x2 + 2 x2 x0 + x2]1x2 + 2 x4 x2 + x21)+

+ F(F + 6 + F) = 4F2 + 12F + 6(1 + F + 1 + 1) =

= 4F 2 + 18F + 18 . (A-13)
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Now, we combine all the component averages, above, to obtain

mean square value

E(W2) = 8(5F2 + 38F + 39) (A-14)

and variance

V = 625F2 + 38F - 11) . (A-15)

SPECIAL CASE K = 6

Now, we adopt a very useful shorthand notation to handle the

rest of the cases of interest. For example, here, +5 = x 5 x0 and

2 = 2 2 which is denoted by 5500; that is, the superfluous x

is ignored when possible. Also, x4 x2 x is denoted by 4220.

With this background, we now have

2 = 5500 2 = 4400+5511+2(5410) ,
45 *4

3= 3300+4411+5522+2(4310+5320+5421)

2 = 2200+3311+4422+5533+2(3210+4220+5320+4321+5331+5432)

2 = 1100+2211+3322+4433+5544+

+2(2110+3210+4310+5410+3221+4321+5421+4332+5432+5443) • (A-16)

From (13), there follows

W= 2n 5 2 1 2 + "f" + 2 (A-17)
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and

324 W 2 4++4++4++ 4 + 4+ 2) 2 2 + + +2 2) (A-18)
W6  +1 2+3 4+5 +1+2 45j

We also abbreviate the following ensemble averages as follows

E(+2 2•) = Tmn • (A-19)

Then, there follows, in a straightforward but tedious manner,

T55 =F 2 , T54 =F+F =2F , T53 = F+1+F 2F+1

T52 = F+1+1+F = 2F+2 , T51 = F+1+1+1+F = 2F+3

T44 = F2+6+F2 = 2F 2 +6 , T43 = (F+F+1)+(l+F+F) = 4F+2

T42 = (F+1+F+l)+(1+F+1+F) = 4F+4 ,

T41 = (F+1+1+F+F)+(F+F+I+I+F)+4 = 6F+8

T33 = 3F2 +4(1+1+1)+2(1+1+1) = 3F 2 +18

T32 = (F+F+I+F)+(l+F+F+I)+(F+1+F+F)+4(1) = 8F+8

T31 = (F+I+F+F+1)+(F+F+I+F+F)+(I+F+F+I+F)+4(1+1) = IOF+13

T22 = 4F2+4(1+F+1+1+F+1)+2(1+F+I+I+F+I) = 4F 2 +12F+24

T21 = (F+F+F+1+1)+(F+F+F+F+1)+(I+F+F+F+F)+(1+1+F+F+F)+12 = 14F+18

T11 = 5F2+(4+2)(F+I+1+1+F+1+1+F+I+F) = 5F2 +24F+36 . (A-20)

The desired average is, from (A-18) - (A-20),

324 E(W 6 = 15F 2 + 144F + 202 . (A-21)

The variance of W6 is then

V= 34[(15F 2 + 144F - 23) . (A-22)
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SPECIAL CASE K = 7

Continuing in the fashion established above, we now have

2 = 6600 , 2 = 5500+6611+2(6510) ,
+6 +5

2 = 4400+5511+6622+2(5410+6420+6521)
+4

+2 = 3300+4411+5522+6633+2(4310+5320+6330+5421+6431+6532)

2 = 2200+3311+4422+5533+6644+

+2(3210+4220+5320+6420+4321+5331+6431+5432+6442+6543)

2 = 1100+2211+3322+4433+5544+6655+2(2110+3210+4310+5410+

+6510+3221+4321+5421+6521+4332+5432+6532+5443+6543+6554) . (A-23)

From (13),

2 + +- -. + +2) (A-24)

and therefore

2401 W 2 = 4+ .. + + 2,2 2 + . 2 +2) . (A-25)
4 7 +1 6 (41 42 5 +6

The required averages are as follows:

T66 F 2 , T65 = F+F =2F , T64 = F+1+F 2F+,

T63 F+1+1+F = 2F+2 , T62 = F+1+1+1+F 2F+3

T61 = F+1+1+1+1+F = 2F+4 , T55 = F2+F2+4+2 = 2F2+6 ,

T54 = (F+F+1)+(1+F+F) = 4F+2 , T53 = (F+1+F+1)+(1+F+1+F) 4F+4

T52 = (F+1+1+F+1)+(1+F+1+1+F) = 4F+6 ,

T51 = (F+1+1+1+F+F)+(F+F+1+1+1+F)+4 = 6F+10
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T44 = 3F 2+4(1+1+1)+2(1+1+1) = 3F 2+18

T43 = (F+F+1+1)+(1+F+F+1)+(1+1+F+F) = 6F+6,

T42 = (F+1+F+1+F)+(1+F+1+F+1)+(F+1+F+1+F)+4(l) = 8F+11

T41 =(3F+3)+(4F+2)+(3F+3)+4(1+1) = 10F+16,

T33 - 4F2+4(1+1+F+1+1+1)+2(1+1+F+1+1+1) -4F 
2+6F+30

T32 =(3F+2)+(3F+2)+(3F+2)+(3F+2)+4(1+1) =12F+16,

T31 = (3F+3)+(4F+2)+(4F+2)+(3F+3)+4(1+1+1) = 14F+22

T22 = F2+(4+2)(1+F+1+1+1+F+1+1+F+1) = SF 2+18F+42

T21 = 2(3F+3)+3(4F+2)+4(1+1+1+1) = 18F+28,

T11 = 6 +(4+2)(F+1+1+1+1+F+1+1+1+F+1+1+F+1+F) =6F 2+30F+60

(A-26)

The average of interest is, from (A-25) and (A-26),

2401 E(2) = 21I2 + 246F + 418 ,(A-27)

leading to variance

V7 = 20121F 2 + 246F -23) .(A-28)
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SPECIAL CASE K = 8

This is the last case that we need to evaluate. We now have

27 = 7700 , 2 = 6600+7711+2(7610) ,

+5 = 5500+6611+7722+2(6510+7520+7621)

+4 . 4400+5511+6622+7733+2(5410+6420+7430+6521+7531+7632)

23 = 3300+4411+5522+6633+7744+

+2(4310+5320+6330+7430+5421+6431+7441+6532+7542+7643)

+2 = 2200+3311+4422+5533+6644+7755+2(3210+4220+5320+6420+

+7520+4321+5331+6431+7531+5432+6442+7542+6543+7553+7654)

= 1100+2211+3322+4433+5544+6655+7766+

+2(2110+3210+4310+5410+6510+7610+3221+4321+5421+6521+7621+

+4332+5432+6532+7632+5443+6543+7643+6554+7654+7665) . (A-29)

From (13) again,

W8 = '9(1++ *2 +... + , (A37

giving

1024 W 2 4 + ... + +4 + 2 2 2 + . + . (A-31)

The averages needed are listed below.

T77 = F 2 , T76 =2F , T75 =2F+1 , T74 =2F+2

T73 = 2F+3 , T72 = 2F+4 , T71 = 2F+5
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T66 F2+F 2+4+2 = 2F 2+6 ,T65 = (F+F+1)+(1+F+F) =4F+2 ,

T64 = (F+1+F+1)+(l+F+1+F) =4F+4,

T63 = (F+1+1+F+1)+(1+F+1+1+F) = 4F+6

T62 = (F+1+1+1+F+1)+(1+F+1+1+1+F) =4F+8

T61 =(3F+4)+(3F+4)+4 = 6F+12

T55 = 3F2+4(1+1+1)+2(1+1+1) = 3F 2+18

T54 = (F+F+1+1)+(l+F+F+1)+(1+1+F+F) = 6F+6,

T53 = 3(2F+3) = 6F+9,

T52 =(3F+3)+(2F+4)+(3F+3)+4(1) =BF+14

T51 = (3F+4)+(4F+3)+(3F+4)+4(1+1) =10F+19,

T44 = 4F2+4(6)+2(6) = 4F 2+36,

T43 = (3F+2)+(2F+3)+(2F+3)+(3F+2)+4(1) = 10F+14

T42 = 4(3F+3)+4(1+1) = 12F+20,

T41 = 2(3F+4)+2(4F+3)+4(1+1+1) =14F+26,

T33 = 5F2+4(2F+8)+2(2F+B) = 5F 2+12F+48,

T32 = 4(3F+3)+(4F+2)+4(1+1+1) =16F+26,

T31 = 2(3F+4)+3(4F+3)+4(1+1+1+1) =18F+33,

T22 = 6F2+4(4F+11)+2(4F+11) = 6F 2+24F+66,

T21 = 2(3F+4)+4(4F+3)+4(1+1+1+1+1) = 22F+40

Til = 7F2+4(6F+15)+2(6F+15) = 7F 2+36F+90 .(A-32)

The desired average is therefore

10ý24 E (W2) = 28Fp2 + 384F + 772 ,(A--33)

giving variance

= (7F 2 + 96F - 3) (A-34)
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APPENDIX B. PROGRAM FOR ESTIMATION OF DISTRIBUTIONS OF WK

10 T=IE6 ! NUMBER OF TRIALS "NUWC TR10237"
20 K=32 I NUMBER OF DATA POINTS, ARBITRARY
30 M=64 ! FFT SIZE, M >= 2K-I, POWER OF 2
40 L=11000 I NUMBER OF LEVELS FOR DISTRIBUTION.
50 Dw=.001 INCREMENT IN W
60 Gr=1000 I GRID SPACING
70 PRINTER IS PRT
80 PRINT "K =";K;" T =";T;"l Dw =";Dw;" UNIFORM"
90 PRINTER IS CRT
100 DOUBLE T,K,ML,M1,Ms,M2,K1,Ts,Ks ! INTEGERS, NOT DP
110 DIM Cos(512),X(2848),Y(2048),V(30000)
120 MI=M-1
130 REDIM Cos(O:M/4),X(08Ml),Y(8:Ml),V(0:L)
140 A=2.*PI/M
150 FOR Ms=0 TO M/4
160 Cos(Ms)=COS(R*Ms) I QUARTER-COSINE TABLE IN Cos<*>
170 NEXT Ms
180 M2=M/2
190 KI=K-1
200 TI=I./T
218 F=12./(K*M) UNIT-VARIRNCE UNIFORM
220 F=F*F RANDOM VARIABLES (x(subk)>
238 Mu=KI/K ! EXACT MEAN OF WK
240 Mul=Var=O.
250 Ta=TIMEDATE
260 FOR Ts=l TO T
270 FOR Ks=O TO KI
280 X(Ks)=RND-.5 ZERO MEAN
298 Y(Ks)=O. REAL INPUT
388 NEXT Ks
318 FOR Ks=K TO MI
320 X(Ks)=Y(Ks)=O.
330 NEXT Ks
340 CALL Fft14(M,Cos(*),X(*),Y(*))
350 S2=S4=8.
360 FOR Ms=l TO M2-1 ZERO TO NYQUIST
370 X=X(Ms)
380 Y=Y(Ms)
398 R=X*X+Y*Y
400 82=S2+R
418 S4=S4+A*R
420 NEXT Ms
430 X=X(O)
440 A=X(M2)
450 X=X*X
460 AzA*A
470 S2=X+R+2.*S2
480 S4=X*X+A*A+2.*S4
490 W=F*(M*.4-S2*S4^ WHITENESS MERSURE WK
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500 MuI=Mul+W
510 Var=Var+(W-Mu)*(W-Mu)! USE KNOWN MEAN Mu
528 Ms=INT(W/Dw)
538 Ms=MIN(Ms,L)
540 V(Ms)=V(Ms)+TI I INCREMENTAL PROBABILITIES
550 NEXT Ts
568 Tb=TIMEDRTE
570 PRINTER IS PRT
588 PRINT (Tb-Ta)/3600;" )tOURS"
590 PRINT
680 MuI=Mul/T ! ESTIMATED MEAN OF WK
618 Var=Var/T ! ESTIMATED VARIANCE OF WK
620 PRINT "Mul =";Mul;" Mu =";Mu
638 PRINT "Var =";Var
648 PRINT
658 PLOTTER IS "GRAPHICS"
668 GRAPHICS ON
670 WINDOW 0,L,-6,0
680 LINE TYPE 3
698 GRID Gr,1
700 LINE TYPE I
710 C=8.
728 FOR Ms=O TO L-1
730 C=C+V(Ms) CDF OF WHITENESs MEASURE WK
740 IF C>8. THEN 768
750 GOTO 770
760 PLOT Ms+ILGT(C)
770 NEXT Ms
780 PENUP
790 E=S1=S2=0.
888 FOR Ms=L TO I STEP -1
818 E=E+V<Ms) EDF OF WHITENESS MEASURE WK
820 SI=SI+E
830 S2=S2+Sl
840 IF E>9. THEN 860
850 GOTO 870
860 PLOT Ms,LGT(E)
878 NEXT Ms
888 PLOT 0,0
890 PENUP
980 Mul=Dw*(.5+S1) I ESTIMATED MEAN OF WK
910 Mu2=2.*Dw*Dw*S2 SEE APPENDIX C
920 PRINT "Mul =";Mul;" Mu .";Mu
938 PRINT "Var =";Mu2-Mu*Mu ! ESTIMATED VARIANCE OF WK
940 PRINT
950 PRINTER IS CRT
968 PAUSE
970 END
988
990 SUB FftI4(DOUBLE N,REAL Co•(*),<(+),YK*)) N<=2114=163384; 0 SUBS
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APPENDIX C. EVALUATION OF MOMENTS DIRECTLY

FROM MEASURED EXCEEDANCE DISTRIBUTION

Let x be a positive random variable with probability density

function p, cumulative distribution function (CDF) C, and

exceedance distribution function (EDF) E. Let the measurements

of these distributions be the interval probabilities

Vn = Prob(nA 1 x < (n+l)A) for 0 • n . (C-i)

Then

O (n+l)A

1 = J dx p(x) = f j dx p(x) = Vn . (C-2)

0 n=O nA

At the same time, we can express

Vn = C'(n+l)A) - C(nA) - E(nA) - E((n+1)A) , (C-3)

which can be inverted, leading respectively to EDF and CDF

E(nA) = Prob(x k nA) = =-I. Vm for n 2 0 , (C-4)
m=n

n-i
C(n6) = Prob(x < nA) = = V for n Z 1 . (C-5)

m=0 m

There also follows

E(0) = 1 , E((n+l)A) = E(nA) - Vn for n k 0 , (C-6)

or, as an alternative form to (C-4) if desired,

E(A) = 1-V 0 , E(2A) = I-V 0 -V 1 , E(3A) = I-V 0 -VI-V 2 , ... (C-7)
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The first two moments of random variable x can be developed

as

i= dx x p(x) = dx E(x) A[ E(0) + - E(nA) , (C-8)
0 0nl

and

P2 f dx x2 p(x) = 2 fdx x Elx) 2 A2 =-- n E(nA) . (C-9)

0 0 n=l

These results can be rapidly evaluated by recursion. For
i E((N+I)A) = 0, use

E=SI=S2=0.
FOR Ns=N TO I STEP -1
E=E+V(Ns)
SI=SI+E
$2=$2+SI
NEXT Ns
Mul=Delta*(.5+Sl)
Mu2=2.*Delta*Delta*S2 (C-10)
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